精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: 的右焦点为F(1,0),点P是椭圆C上一动点,若动点P到点的距离的最大值为b2
(1)求椭圆C的方程,并写出其参数方程;
(2)求动点P到直线l:x+2y﹣9=0的距离的最小值.

【答案】
(1)解:由题意右焦点为F(1,0),点P是椭圆C上一动点,

若动点P到点的距离的最大值为b2

有:

解得:

∴椭圆C的方程为 ,其参数方程为 (θ为参数)


(2)解:设点P坐标为

则P到直线l:x+2y﹣9=0的距离

∴当 ,即θ=2kπ+ ,k∈Z时,

∴动点P到直线l:x+2y﹣9=0的距离的最小值为


【解析】(1)由椭圆的焦点坐标,可得c,再由椭圆上的点与焦点的距离最大值为a+c,解方程可得a,b,进而得到椭圆的方程和参数方程;(2)设点P坐标为 ,运用点到直线的距离公式,以及两角和的正弦公式,化简可得距离d,再由正弦函数的值域,可得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数且当 时是减函数,若 ,则函数 的零点共有( )
A.4个
B.5个
C.6个
D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求实数m的取值范围;
(2)当x∈N时,求集合A的子集的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面 平面 ,四边形 为平行四边形, .

(1)求证: 平面
(2)求 到平面 的距离;
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C1的方程为(x﹣2)2+y2=4.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2,射线C3的极坐标方程为
(1)将曲线C1的直角坐标方程化为极坐标方程;
(2)若射线C3与曲线C1、C2分别交于点A、B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m2m-1)x-5m-3m为何值时,f(x):

(1)是幂函数;

(2)是正比例函数;

(3)是反比例函数;

(4)是二次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知隧道的截面是半径为4.0 m的半圆车辆只能在道路中心线一侧行驶一辆宽为2.7 m高为3 m的货车能不能驶入这个隧道假设货车的最大宽度为a m那么要正常驶入该隧道货车的限高为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCDABCD′中:

(1)求二面角D′-ABD的大小;

(2)若MCD′的中点,求二面角MABD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:

所成角的正切值是

的体积是

平面平面

直线与平面所成角为

其中正确的有 .(填写你认为正确的序号)

查看答案和解析>>

同步练习册答案