【题目】已知函数
(I)求函数f(x)的最小正周期和对称中心的坐标
(II)设,求函数g(x)在上的最大值,并确定此时x的值
【答案】(I) , . (II) 见解析.
【解析】试题分析:(Ⅰ)由二倍角公式和化一公式化简可得;
(Ⅱ)由(Ⅰ)知的解析式,把代入求,进而求出g(x),结合x的范围,求出最大值即可.
试题解析:(I)
∴函数f(x)的最小正周期,
由,得,
∴函数f(x)的对称中心的坐标为.
(II)由(I)可得f(x-)=2sin[ (x-)+]=2sin(x+),
∴g(x)=[f(x-)]2=4×=2-2cos(3x+),
∵x∈[-,],∴-≤3x+≤,
∴当3x+=π,即x=时,g(x)max=4.
点睛:三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.
科目:高中数学 来源: 题型:
【题目】已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率
(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程 + =1表示焦点在x轴上且离心率小于 的椭圆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣ )=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,椭圆C1: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2: ﹣ =1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某学校有一块直角三角形空地,其中, , ,该校欲在此空地上建造一平行四边形生物实践基地,点分别在上.
(1)若四边形为菱形,求基地边的长;
(2)求生物实践基地的最大占地面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】1994年到2016年所有关于某项研究成果的540篇论文分布如下图所示.
(1)从这540篇论文中随机抽取一篇来研究,那么抽到2016年发表论文的概率是多少?
(2)如果每年发表该领域有国际影响力的论文超过50篇,我们称这一年是该领域的论文“丰年”.若从1994年到2016年中随机抽取连续的两年来研究,那么连续的两年中至少有一年是“丰年”的概率是多少?
(3)由图判断,从哪年开始连续三年论文数量方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,A1C1与B1D1的交点为O1 , AC与BD的交点为O.
(1)求证:直线OO1∥平面BCC1B1;
(2)若AB=BC,求证:直线BO⊥平面ACC1A1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为,直线.
(1)求圆心的轨迹方程;
(2)若,求直线被圆所截得弦长的最大值;
(3)若直线是圆心下方的切线,当在上变化时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com