精英家教网 > 高中数学 > 题目详情
19.若向面积为2的△ABC内任取一点P,并连接PB,PC,则△PBC的面积小于1的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 首先分析题目求在面积为S的△ABC的边AB上任取一点P,则△PBC的面积小于1的概率,即可考虑画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是什么.再根据几何关系求解出它们的比例即可.

解答 解:记事件A={△PBC的面积小于 1},
基本事件空间是三角形ABC的面积,(如图)
事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),
因为阴影部分的面积是整个三角形面积的$\frac{3}{4}$,
所以P(A)=$\frac{3}{4}$.
故选:D.

点评 本题考查了几何概型,解答此题的关键在于明确测度比是面积比.对于几何概型常见的测度是长度之比,面积之比,体积之比,角度之比,要根据题意合理的判断和选择是哪一种测度进行求解.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给出命题:p:$\sqrt{2}$>1,q:y=tanx是偶函数,则有三个命题:“p且q”、“p或q”、“非p”中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某小区现有一块草坪ABCD呈平行四边形形状,AB=3,AD=2,∠BAD=60°,为了改善居民的生活环境,决定将原草坪扩建成三角形PAQ形状,点A,D,P共线,Q,C,P共线,A,B,Q共线,设AP=x,BQ=y.
(1)求y关于x的函数关系式;
(2)求△APQ面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA=$\sqrt{3}$,AB=1,求三棱锥A-QCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数a,b 满足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在数列{an}中,若an2-an-12=p(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的判断:
①若{an}是等方差数列,则{an2}是等差数列;
②若数列{an}是等方差数列,则数列{an2}是等方差数列;
③{(-1)n}是等方差数列;
④若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者,若f(a+2)>f(a),则实数a的取值范围为(-∞,-2)∪(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(log2x)=x2+2x.
(1)求函数f(x)的解析式;
(2)若方程f(x)=a•2x-4在区间(0,2)内有两个不相等的实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案