分析 (1)取PD中点R,连结MR,CR,通过证明四边形MNCR是平行四边形得出MN∥CR,于是MN∥平面PCD;
(2)棱锥Q-ACD的底面△ACD为等边三角形,高为PA的$\frac{1}{2}$,代入体积公式计算即可.
解答
解:(1)取PD中点R,连结MR,CR,
∵M是PA的中点,R是PD的中点,
∴MR=$\frac{1}{2}$AD,MR∥AD,
∵四边形ABCD是菱形,N为BC的中点,
∴NC=$\frac{1}{2}AD$,NC∥AD.
∴NC∥MR,NC=MR,
∴四边形MNCR为平行四边形,
∴MN∥CR,又CR?平面PCD,MN?平面PCD,
∴MN∥平面PCD.
(2)∵四边形ABCD是菱形,∠BAD=120°,
∴AC=AD=CD=1,∴${S_{△ACD}}=\frac{{\sqrt{3}}}{4}$.
∵Q是PC的中点,∴Q到平面ABCD的距离h=$\frac{1}{2}$PA=$\frac{\sqrt{3}}{2}$.
∴${V_{A-QCD}}={V_{Q-ACD}}=\frac{1}{3}×{S_{△ACD}}×\frac{1}{2}PA=\frac{1}{8}$.
点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 和a的取值有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com