精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$(a-1)x2-x+$\frac{11}{27}$.
(Ⅰ)当a=3时,求证:函数f(x)的图象关于点($\frac{1}{3}$,0)对称;
(Ⅱ)当a<0时,求f(x)的单调区间.

分析 (Ⅰ)将函数f(x)的图象向左平移$\frac{1}{3}$个单位,得到函数g(x)=f(x+$\frac{1}{3}$)=x3-$\frac{4}{3}$x的图象,根据g(x)的奇偶性判证出结论即可;
(Ⅱ)求出f(x)的导数,通过讨论a的范围求出函数的单调区间即可.

解答 (Ⅰ)证明:当a=3时,f(x)=x3-x2-x+$\frac{11}{27}$,
将函数f(x)的图象向左平移$\frac{1}{3}$个单位,
得到函数g(x)=f(x+$\frac{1}{3}$)=x3-$\frac{4}{3}$x的图象,
∵任意x∈R,-x∈R且g(-x)=-g(x),
∴g(x)是奇函数,图象关于原点对称,
∴函数f(x)的图象关于($\frac{1}{3}$,0)对称;
(Ⅱ)解:由f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$(a-1)x2-x+$\frac{11}{27}$,
得:f′(x)=ax2-(a-1)x-1=(x-1)(ax+1),
①a=-1时,f′(x)=-(x-1)2≤0,
∴f(x)在R递减;
②当a<-1时,令f′(x)>0,解得:-$\frac{1}{a}$<x<1,
令f′(x)<0,解得:x>1或x<-$\frac{1}{a}$,
∴f(x)在(-∞,-$\frac{1}{a}$)递减,在(-$\frac{1}{a}$,1)递增,在(1,+∞)递减;
③当-1<a<0时,令f′(x)>0,解得:1<x<-$\frac{1}{a}$,
令f′(x)<0,解得:x<1或x>-$\frac{1}{a}$,
∴f(x)在(-∞,1)递减,在(1,-$\frac{1}{a}$)递增,在(-$\frac{1}{a}$,+∞)递减.

点评 本题考查了函数的奇偶性,考查函数的单调性问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列等式正确的是(  )
A.$\overrightarrow{AB}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$B.$\overrightarrow{AB}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$C.$\overrightarrow{AB}$-$\overrightarrow{BA}$=$\overrightarrow 0$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知CD是△ABC的高,DE⊥CA,DF⊥CB,求证:△CEF∽△CBA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某小区现有一块草坪ABCD呈平行四边形形状,AB=3,AD=2,∠BAD=60°,为了改善居民的生活环境,决定将原草坪扩建成三角形PAQ形状,点A,D,P共线,Q,C,P共线,A,B,Q共线,设AP=x,BQ=y.
(1)求y关于x的函数关系式;
(2)求△APQ面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)顶点在原点,焦点是F(6,0)的抛物线的方程.
(2)求经过(1,2)点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA=$\sqrt{3}$,AB=1,求三棱锥A-QCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数a,b 满足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且满足数列{2an}是等比数列,若a4+a1009+a2014=$\frac{3}{2}$,则S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

同步练习册答案