精英家教网 > 高中数学 > 题目详情
16.已知f(x)=$\frac{{a{x^2}+bx+1}}{x+c}$(x≠0,a>0)是奇函数,且当x>0时,f(x)有最小值2$\sqrt{2}$.
(1)求f(x)的表达式;
(2)设数列{an}满足a1=2,2an+1=f(an)-an(n∈N*).令bn=$\frac{{{a_n}-1}}{{{a_n}+1}}$,求证bn+1=bn2
(3)求数列{bn}的通项公式.

分析 (1)由f(x)是奇函数,可得f(-x)=-f(x),解出b,c,再利用基本不等式的性质可得a.
(2)由2an+1=f(an)-an(n∈N*),可得an+1与an的关系,令bn=$\frac{{{a_n}-1}}{{{a_n}+1}}$,利用递推关系即可证明bn+1=bn2
(3)由a1=2>0,可得${b_{n+1}}={(\frac{{{a_n}-1}}{{{a_n}+1}})^2}={b_n}^2>0$.取对数得$lg{b_{n+1}}=lg{b_n}^2=2lg{b_n}$.利用等比数列的通项公式即可得出.

解答 解:(1)∵f(x)是奇函数,∴有f(-x)=-f(x),即$\frac{{a{x^2}-bx+1}}{-x+c}=-\frac{{a{x^2}+bx+1}}{x+c}$.
整理得(b-ac)x2=c对x≠0恒成立.∴有$\left\{\begin{array}{l}b=ac\\ c=0\end{array}\right.$,∴b=c=0.
∴$f(x)=\frac{{a{x^2}+1}}{x}$.
∵a>0,∴当x>0时,∴$f(x)=ax+\frac{1}{x}≥2\sqrt{a}=2\sqrt{2}$,∴a=2.∴$f(x)=\frac{{2{x^2}+1}}{x}$.
(2)证明:$2{a_{n+1}}=f({a_n})-{a_n}=\frac{{2{a_n}^2+1}}{a_n}-{a_n}=2{a_n}+\frac{1}{a_n}-{a_n}={a_n}+\frac{1}{a_n}$.
∵${b_n}=\frac{{{a_n}-1}}{{{a_n}+1}}$,
∴${b_{n+1}}=\frac{{{a_{n+1}}-1}}{{{a_{n+1}}+1}}=2\frac{{2{a_{n+1}}-2}}{{{a_{n+1}}+2}}=\frac{{{a_n}+\frac{1}{a_n}-2}}{{{a_n}+\frac{1}{a_n}+2}}=\frac{{{a_n}^2-2{a_n}+1}}{{{a_n}^2+2{a_n}+1}}$=$\frac{{{{({a_n}-1)}^2}}}{{{{({a_n}+1)}^2}}}={(\frac{{{a_n}-1}}{{{a_n}+1}})^2}={b_n}^2$.
(3)∵a1=2>0,∴${b_{n+1}}={(\frac{{{a_n}-1}}{{{a_n}+1}})^2}={b_n}^2>0$.取对数得$lg{b_{n+1}}=lg{b_n}^2=2lg{b_n}$.
由${b_n}=\frac{{{a_n}-1}}{{{a_n}+1}}$得bn≠1,∴lgbn≠0.∴有$\frac{{lg{b_{n+1}}}}{{lg{b_n}}}=2$为常数.
∴数列$\{\frac{{lg{b_{n+1}}}}{{lg{b_n}}}\}$为等比数列.
∵${b_1}=\frac{{{a_1}-1}}{{{a_1}+1}}=\frac{2-1}{2+1}=\frac{1}{3}$,∴$lg{b_n}=(lg\frac{1}{3})•{2^{n-1}}={2^{n-1}}lg\frac{1}{3}=lg{(\frac{1}{3})^{2n-1}}$.
∴${b_n}=(\frac{1}{3}){2^{n-1}}$.

点评 本题考查了数列的递推关系、等比数列的通项公式、对数的运算性质、函数的奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设锐角△ABC的外接圆为圆Γ,过点B,C作圆Γ的两条切线交于点P,链接AP与BC交于点D,点E,F分别在边AC,AB上,使得DE∥BA,DF∥CA.证明:F,B,C,E四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA=$\sqrt{3}$,AB=1,求三棱锥A-QCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在数列{an}中,若an2-an-12=p(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的判断:
①若{an}是等方差数列,则{an2}是等差数列;
②若数列{an}是等方差数列,则数列{an2}是等方差数列;
③{(-1)n}是等方差数列;
④若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.曲线y=$\frac{1}{x}$在点P(-1,-1)的切线方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者,若f(a+2)>f(a),则实数a的取值范围为(-∞,-2)∪(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\left\{\begin{array}{l}a{x^2}+bx+c,x≥-1\\ f(-x-4),x<-1\end{array}$,其图象上点(2,f(2))处的切线方程是y=2x-1,则图象上点(-6,f(-6))处的切线方程为2x+y+9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=(1+i)(2-i),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.3$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案