精英家教网 > 高中数学 > 题目详情
1.已知复数z=(1+i)(2-i),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.3$\sqrt{2}$D.2

分析 利用复数模的计算公式即可得出.

解答 解:复数z=(1+i)(2-i)=3+i,
则|z|=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$.
故选:B.

点评 本题考查了复数模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\frac{{a{x^2}+bx+1}}{x+c}$(x≠0,a>0)是奇函数,且当x>0时,f(x)有最小值2$\sqrt{2}$.
(1)求f(x)的表达式;
(2)设数列{an}满足a1=2,2an+1=f(an)-an(n∈N*).令bn=$\frac{{{a_n}-1}}{{{a_n}+1}}$,求证bn+1=bn2
(3)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-(a+2)x+2alnx(a>0),
(1)若曲线y=f(x)在点(1,f(1))处的切线为y=2x+b,求a+2b的值;
(2)讨论函数f(x)的单调性;
(3)设函数g(x)=-(a+2)x,若至少存在一个x0∈[e,4],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域
(1)y=$\sqrt{x+2}$+$\frac{1}{x+1}$+(x-1)0
(2)y=$\frac{1}{{1-\sqrt{x-3}}}$
(3)若y=f(x)的定义域为[1,3],求y=f(1-3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
(Ⅱ)求证:AH•BH=AE•HC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z=a+i(a∈R,i是虚数单位),若$\frac{z}{1-i}$为纯虚数,则|z|的值为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,$CD=BE=\sqrt{2}$,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE,其中$A'O=\sqrt{3}$.

(Ⅰ)证明:A′O⊥平面BCDE;
(Ⅱ)求O到平面A′DE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函数f(x)的最小正周期和单调区间;
(2)设锐角△ABC的三个内角A、B、C的对应边分别是a,b,c,若$cosB=\frac{1}{3}$,$c=\sqrt{6}$,f($\frac{C}{2}$)=-$\frac{1}{4}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$ 的值为(  )
A.22n-1-1B.22n-1C.2n-1D.2n

查看答案和解析>>

同步练习册答案