精英家教网 > 高中数学 > 题目详情
1.如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
(Ⅱ)求证:AH•BH=AE•HC.

分析 (Ⅰ)由弦切角定理及其同弧所对的圆周角的性质、角平分线的性质即可证明.
(Ⅱ)由(Ⅰ)可知BE=BH.可得AH•BH=AH•BE.利用相似三角形的判定定理可得:△AHC∽△AEB,再利用性质即可证明.

解答 证明:(Ⅰ)由弦切角定理知∠DBE=∠DAB.
又∠DBC=∠DAC,∠DAB=∠DAC,
∴∠DBE=∠DBC.
(Ⅱ)由(Ⅰ)可知BE=BH.
∴AH•BH=AH•BE,
∵∠DAB=∠DAC,∠ACB=∠ABE,
∴△AHC∽△AEB,
∴$\frac{AH}{AE}=\frac{HC}{BE}$,即AH•BE=AE•HC,
∴AH•BH=AE•HC.

点评 本题考查了弦切角定理及其同弧所对的圆周角的性质、角平分线的性质、相似三角形的判定与性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且满足数列{2an}是等比数列,若a4+a1009+a2014=$\frac{3}{2}$,则S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(log2x)=x2+2x.
(1)求函数f(x)的解析式;
(2)若方程f(x)=a•2x-4在区间(0,2)内有两个不相等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知过点A(0,1)且斜率为k的直线?与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(I)写出直线?的方程和圆C的圆心坐标和半径,并k的取值范围;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=(1+i)(2-i),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.3$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“ab<0”是“a>0且b<0”的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E的中心在坐标原点,且抛物线x2=-4$\sqrt{5}$y的焦点是椭圆E的一个焦点,以椭圆E的长轴的两个端点及短轴的一个端点为顶点的三角形的面积为6.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若斜率为$\frac{3}{2}$的直线l与椭圆E交于不同的两点A、B,又点C($\frac{4}{3}$,2),求△ABC面积最大时对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,则M∩N=(  )
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

查看答案和解析>>

同步练习册答案