精英家教网 > 高中数学 > 题目详情
直线与坐标轴的交点分别是一个椭圆的焦点和顶点,则此椭圆的离心率为  (   )
A.B.C.D.
C

分析:直线x-2y+2=0与坐标轴的交点为(-2,0),(0,1),依题意得c=2,b=1?a= ?e= 或c=1,b=2,∴a= ,∴e=
解:直线x-2y+2=0与坐标轴的交点为(-2,0),(0,1),
∵直线x-2y+2=0经过椭圆的焦点和顶点,∴c=2,b=1?a=?e=或c=1,b=2,∴a=,∴e=
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:
(Ⅱ)若的周长为6;写出椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上顶点为,左右焦点分别为,直线与圆相切,若椭圆上点使得成等比数列

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为,过点与椭圆交于两点.
(1)若直线的斜率为1,且,求椭圆的标准方程;
(2)若(1)中椭圆的右顶点为,直线的倾斜角为,问为何值时,取得最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆)的离心率为,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点B为椭圆+=1的左准线与轴的交点,若线段AB的中点C在椭圆上,则该椭圆的离心率为       
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

16.在△ABC中,∠A=15°,∠B=105°,若以AB为焦点的椭圆经过点C.则该椭圆的离心率          

查看答案和解析>>

同步练习册答案