精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆)的离心率为,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,求直线的方程.
(1)
(2)
(1)短轴长…………………………1分
,所以,所以椭圆的方程为…………………………4分
(2)设直线的方程为
,消去得,
,…………………………6分
 即…………………………8分

…………………………10分
,解得,所以……………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分) 已知椭圆C:,其相应于焦点的准线方程为(Ⅰ)求椭圆C的方程;(Ⅱ)已知过点倾斜角为的直线分别交椭圆C于A、B两点,求证:(Ⅲ)过点作两条互相垂直的直线分别交椭圆C于A、B和D、E,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若给定椭圆C:ax2+by2=1(a>0,b>0,ab)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,问是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与坐标轴的交点分别是一个椭圆的焦点和顶点,则此椭圆的离心率为  (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。
(1)求椭圆的方程;
(2)求的值(O点为坐标原点);
(3)若坐标原点O到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上一点P到右焦点的距离是长轴两端点到右焦点距离的等差中项,则P点的坐标为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆被直线截得的弦长为                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果为椭圆的左焦点,分别为椭圆的右顶点和上顶点,为椭圆上的点,当为椭圆的中心)时,椭圆的离心率为         

查看答案和解析>>

同步练习册答案