精英家教网 > 高中数学 > 题目详情
若给定椭圆C:ax2+by2=1(a>0,b>0,ab)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,问是否为定值?说明理由.
(1)见解析(2)见解析(3) 见解析
(1)
即ax2–2ax0x+ax02=0
∴△=4a2x02–4a2x02=0
∴l与椭圆C相切.           (0.34)
(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C的外部.
是真命题。联立方程得(aby02+a2x02)x2–2ax0x+1–by02=0
则△=4a2x02–4a(by02+ax02)(1–by02)>0
∴ax02–by02+b2y04–ax02+abx02y02>0
∴by02+ax02>1
∴N(x0,y0)在椭圆C的外部.  (0.75)
(3)同理可得此时l与椭圆相离,设M(x1,y1),A(x,y)
代入椭圆C:ax2+by2=1,利用M在l上,
即ax0x1+by0y1=1,整理得(ax02+by02–1)12+ax12+by12–1=0
同理得关于2的方程,类似.
1、2是(ax02+by02–1)2+ax12+by12–1=0的两根
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线与⊙相切,并且与椭圆交于不同的两点
(1)求椭圆的标准方程;
(2)当,且满足时,求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,椭圆经过点,离心率

(l)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为不重合),则直线轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线过椭圆的左焦点和一个顶点,该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上顶点为,左右焦点分别为,直线与圆相切,若椭圆上点使得成等比数列

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆)的离心率为,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点。
(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:,求线段的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知椭圆的左、右准线分别为l1l2,且分别交x轴于CD两点,从l1上一点A发出一条光线经过椭圆的左焦点Fx轴反射后与l2交于点B,若,且,则椭圆的离心率等于_____________.

查看答案和解析>>

同步练习册答案