精英家教网 > 高中数学 > 题目详情
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点。
(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:,求线段的中点的轨迹方程。
(Ⅰ)4
(Ⅱ)
(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为ab> 0 )。
,由准线方程得,由,解得a =" 2" ,c = ,从而 b = 1,椭圆方程为
又易知C,D两点是椭圆的焦点,所以,
从而,当且仅当,即点M的坐标为 时上式取等号,的最大值为4。
(II)如答(20)图,设

因为,故

     ①
因为

所以  .    ②
P点的坐标为,因为PBQ的中点
所以    
由因为 ,结合①,②得




故动点P的估计方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若给定椭圆C:ax2+by2=1(a>0,b>0,ab)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,问是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上一点P到右焦点的距离是长轴两端点到右焦点距离的等差中项,则P点的坐标为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,过椭圆的左焦点x轴的垂线交椭圆于点P,点A和点B分别为椭圆的右顶点和上顶点,OPAB
(1)求椭圆的离心率e(2)过右焦点作一条弦QR,使QRAB.若△的面积为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点关于直线的对称点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆被直线截得的弦长为                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,一个顶点A(0,-1),且右焦点到右准线的距离为.
(1)求椭圆的方程.
(2)试问是否能找到一条斜率为k(k≠0)的直线l,使l与椭圆交于不同两点M、N且满足|AM|=|AN|?若这样的直线存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案