精英家教网 > 高中数学 > 题目详情
(本题满分12分)如图,过椭圆的左焦点x轴的垂线交椭圆于点P,点A和点B分别为椭圆的右顶点和上顶点,OPAB
(1)求椭圆的离心率e(2)过右焦点作一条弦QR,使QRAB.若△的面积为,求椭圆的方程.
(Ⅰ)  (Ⅱ)  
(1)∵,∴
∵OP∥AB,∴,∴
解得:b=c.∴,故      (4分)
(2)由(1)知椭圆方程可化简为.①
易求直线QR的斜率为,故可设直线QR的方程为:.②
由①②消去y得:.∴. (8分)
于是△的面积S=
=,∴
因此椭圆的方程为,即.   (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:
(Ⅱ)若的周长为6;写出椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点B为椭圆+=1的左准线与轴的交点,若线段AB的中点C在椭圆上,则该椭圆的离心率为       
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,一条准线的方程为,过椭圆的左焦点,且方向向量为的直线交椭圆于两点,的中点为
(1)求直线的斜率(用表示);
(2)设直线的夹角为,当时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点。
(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:,求线段的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C,经过椭圆C的右焦点F且斜率为kk≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.

(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;
(2)若,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,B(– c,0),C(c,0),AH⊥BC,垂足为H,且
(1)若= 0,求以B、C为焦点并且经过点A的椭圆的离心率;
(2)D分有向线段的比为,A、D同在以B、C为焦点的椭圆上,当 ―5≤ 时,求椭圆的离心率e的取值范围.

查看答案和解析>>

同步练习册答案