精英家教网 > 高中数学 > 题目详情
分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
(Ⅰ),即点P为椭圆短轴端点时,有最小值3;
,即点P为椭圆长轴端点时,有最大值4
(Ⅱ)不存在直线l,使得|F2C|=|F2D|

(Ⅰ)易知 
设P(x,y),则
 

,即点P为椭圆短轴端点时,有最小值3;
,即点P为椭圆长轴端点时,有最大值4
(Ⅱ)假设存在满足条件的直线l易知点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆无交点,所在直线l斜率存在,设为k
直线l的方程为 
由方程组
依题意 
时,设交点C,CD的中点为R


又|F2C|=|F2D|
 
∴20k2=20k2-4,而20k2=20k2-4不成立,  所以不存在直线,使得|F2C|=|F2D|
综上所述,不存在直线l,使得|F2C|=|F2D|
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:
(Ⅱ)若的周长为6;写出椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,椭圆经过点,离心率

(l)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为不重合),则直线轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆)的离心率为,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且以为直径的圆经过坐标原点.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点P是(1)中所得椭圆上的动点,当P在何位置时,最大,说明理由,并求出最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点。
(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:,求线段的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在平面直角坐标系中,向量,且
 .(1)设的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P为圆C:(x+1)2+y2=9上一点,A(1,0)为圆C内一点,线段AP的中垂线交半径CP于点M,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案