精英家教网 > 高中数学 > 题目详情
精英家教网如图,直三棱柱ABC-A′B′C′内接于高为
2
的圆柱中,已知∠ACB=90°,AA′=
2
,BC=AC=1,O为AB的中点.
求(1)圆柱的全面积;
(2)异面直线AB′与CO所成的角的大小;
(3)求二面角A′-BC-A的大小.
分析:(1)先由等腰直角三角形的特征求得圆柱底面半径,再利用圆柱侧面积公式和底面积公式求解.
(2)通过圆柱的结构特征可知co⊥平面ABB′A′,从而有co⊥AB′,得到∠COO′=90°,从而得到结论.
(3)由CB⊥平面A′AC,易得BC⊥CA′,可知∠A′CA是二面角的平面角,用正切函数可求得结论.
解答:精英家教网解:(1)根据题意:底面半径为:r=
2
2

∴S=2πr2+2πrh=3π;

(2)∵co⊥平面ABB′A′
∴co⊥AB′
∴∠COO′=90°
∴异面直线AB′与CO所成的角是90°

(3)∵CB⊥平面A′AC,
∴BC⊥CA′,
∴∠A′CA是二面角的平面角
∴A′CA=arctan
2
点评:本题主要考查圆柱的几何特征,异面直线所成的角及二面角问题,同时,还考查了转化思想和学生的运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案