精英家教网 > 高中数学 > 题目详情
已知f(x)=
x
+lnx
,则f′(1)=______.
f(x)=
x
+lnx
,求导得:f′(x)=
1
2
x
+
1
x

则f′(1)=
1
2
1
+
1
1
=
3
2

故答案为:
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常数).
(1)求曲线y=g(x)在点P(1,g(1))处的切线l.
(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.
(3)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(
2
)

(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)、g(x)都是定义在R上的函数,若存在实数m、n使得h(x)=m•f(x)+n•g(x),则称h(x)为f(x)、g(x)在R上生成的函数.若f(x)=2cos2x-1,g(x)=sinx.
(1)判断函数y=cosx是否为f(x)、g(x)在R上生成的函数,并说明理由;
(2)记l(x)为f(x)、g(x)在R上生成的一个函数,若l(
π6
)=2
,且l(x)的最大值为4,求l(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年西城区抽样理)(14分)

 已知f (x)、g(x)都是定义在R上的函数,如果存在实数mn使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.

f (x)=x2+axg(x)=x+b(R),l(x)= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.

(Ⅰ)设,若h (x)为偶函数,求

(Ⅱ)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;

(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.

查看答案和解析>>

同步练习册答案