9£®ÒÑÖªÖ±½Ç×ø±êϵxOyµÄÔ­µãºÍ¼«×ø±êϵOxµÄ¼«µãÖØºÏ£¬xÖá·Ç¸º°ëÖáÓ뼫ÖáÖØºÏ£¬µ¥Î»³¤¶ÈÏàͬ£¬ÔÚÖ±½Ç×ø±êϵÏ£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Õ}\\{y=sin¦Õ}\end{array}}$£¬£¨¦ÕΪ²ÎÊý£©£®
£¨1£©ÔÚ¼«×ø±êϵÏ£¬ÈôÇúÏßCÓëÉäÏߦÈ=$\frac{¦Ð}{4}$ºÍÉäÏߦÈ=-$\frac{¦Ð}{4}$·Ö±ð½»ÓÚA£¬BÁ½µã£¬Çó¡÷AOBµÄÃæ»ý£»
£¨2£©¸ø³öÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È=2£¬ÇóÇúÏßCÓëÖ±ÏßlÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеĽ»µã×ø±ê£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Õ}\\{y=sin¦Õ}\end{array}}$£¬£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÇúÏß CÔÚÖ±½Ç×ø±êϵÏÂµÄÆÕͨ·½³Ì£®½«Æä»¯Îª¼«×ø±ê·½³ÌΪ$\frac{{{¦Ñ^2}{{cos}^2}¦È}}{4}+{¦Ñ^2}{sin^2}¦È=1$£¬·Ö±ð´úÈë$¦È=\frac{¦Ð}{4}$ºÍ$¦È=-\frac{¦Ð}{4}$£¬¿ÉµÃ|OA|£¬|OB|£¬$¡ÏAOB=\frac{¦Ð}{2}$£¬ÀûÓÃÖ±½ÇÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¿ÉµÃ¡÷AOBµÄÃæ»ý£®
£¨2£©½«lµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÃx-y-2=0£¬ÓëÍÖÔ²·½³ÌÁªÁ¢½â³ö¼´¿ÉµÃ³ö½»µã×ø±ê£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Õ}\\{y=sin¦Õ}\end{array}}$£¬£¨¦ÕΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÇúÏß CÔÚÖ±½Ç×ø±êϵÏÂµÄÆÕͨ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£¬
½«Æä»¯Îª¼«×ø±ê·½³ÌΪ$\frac{{{¦Ñ^2}{{cos}^2}¦È}}{4}+{¦Ñ^2}{sin^2}¦È=1$£¬
·Ö±ð´úÈë$¦È=\frac{¦Ð}{4}$ºÍ$¦È=-\frac{¦Ð}{4}$£¬µÃ${|{OA}|^2}={|{OB}|^2}=\frac{8}{5}$£¬
¡ß$¡ÏAOB=\frac{¦Ð}{2}$£¬¹Ê¡÷AOBµÄÃæ»ý$S=\frac{1}{2}|{OA}||{OB}|=\frac{4}{5}$£®
£¨2£©½«lµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬µÃx-y-2=0£¬
ÁªÁ¢·½³Ì$\left\{{\begin{array}{l}{\frac{x^2}{4}+{y^2}=1}\\{x-y-2=0}\end{array}}\right.$£¬½âµÃx=2£¬y=0£¬»ò$x=\frac{6}{5}£¬y=-\frac{4}{5}$£¬
¡àÇúÏßCÓëÖ±ÏßlµÄ½»µã×ø±êΪ£¨2£¬0£©»ò$£¨{\frac{6}{5}£¬-\frac{4}{5}}£©$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄ½»µã£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=ax2-lnx£¨a¡ÊR£©
£¨1£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©µÄÇÐÏß·½³Ì£»
£¨2£©Èô?x¡Ê£¨0£¬1]£¬|f£¨x£©|¡Ý1ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=xlnx£¬g£¨x£©=$\frac{x}{{e}^{x}}$£®
£¨1£©¼ÇF£¨x£©=f£¨x£©-g£¨x£©£¬ÇóÖ¤£ºF£¨x£©=0ÔÚÇø¼ä£¨1£¬+¡Þ£©ÄÚÓÐÇÒ½öÓÐÒ»¸öʵ¸ù£»
£¨2£©ÓÃmin{a£¬b}±íʾa£¬bÖеÄ×îСֵ£¬É躯Êým£¨x£©=min{f£¨x£©£¬g£¨x£©}£¬Èô·½³Ìm£¨x£©=cÔÚ£¨1£¬+¡Þ£©ÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ùx1£¬x2£¨x1£¼x2£©£¬¼ÇF£¨x£©=0ÔÚ£¨1£¬+¡Þ£©ÄÚµÄʵ¸ùx0£®
ÇóÖ¤£º$\frac{{x}_{1}+{x}_{2}}{2}$£¾x0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èç¹û·½³Ì£¨lgx£©2+lg6•lgx+lg2•lg3=0µÄÁ½¸ùΪx1£¬x2£¬Ôòx1x2µÄֵΪ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=|x-a|+2a£¨aΪʵ³£Êý£©£®
£¨1£©Èô²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-6¡Üx¡Ü4}£¬ÇóaµÄÖµ£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x+a£©-2a£¬µ±a=3ÇÒ3£¼m£¼6ʱ£¬½â¹ØÓÚxµÄ²»µÈʽf£¨x£©-g£¨x£©¡Ým£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÓÐÈË·¢ÏÖ£¬¶à¿´µçÊÓÈÝÒ×ʹÈ˱äÀäÄ®£¬Èç±íÊÇÒ»¸öµ÷²é»ú¹¹¶Ô´ËÏÖÏóµÄµ÷²é½á¹û£º
ÀäÄ®²»ÀäÄ®×ܼÆ
¶à¿´µçÊÓ6842110
ÉÙ¿´µçÊÓ203858
×ܼÆ8880168
P£¨K2¡Ýk£©0.0250.0100.0050.001
k5.0246.6357.87910.828
K2=$\frac{{168¡Á{{£¨{68¡Á38-20¡Á42}£©}^2}}}{110¡Á58¡Á88¡Á80}$¡Ö11.377£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´óÔ¼ÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°¶à¿´µçÊÓÓëÈ˱äÀäÄ®¡±ÓйØÏµ
B£®´óÔ¼ÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°¶à¿´µçÊÓÓëÈ˱äÀäÄ®¡±Ã»ÓйØÏµ
C£®Ä³È˰®¿´µçÊÓ£¬ÔòËû±äÀäÄ®µÄ¿ÉÄÜÐÔΪ99.9%
D£®°®¿´µçÊÓµÄÈËÖдóÔ¼ÓÐ99.9%»á±äÀäÄ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ËıßÐÎADBCÊÇÔ²ÄÚ½ÓËıßÐΣ¬¡ÏCAB=¡ÏADC£®ÑÓ³¤DAµ½EʹBD=AE£¬Á¬½áEC£®
£¨1£©ÇóÖ¤£ºCE=CD£»
£¨2£©ÈôAC¡ÍBC£¬CD=1£¬ÇóAD+BDµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}ÖÐÂú×ãa1=1£¬an+1-an=2n£¨n¡ÊN+£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ
£¨2£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}+a£¬x£¼1}\\{£¨x+a£©£¨x+2a£©£¬x¡Ý1}\end{array}\right.$£¬Èôf£¨x£©Ç¡ÓÐ2¸öÁãµã£¬ÔòʵÊýaµÄ·¶Î§ÊÇ$£¨-¡Þ£¬-2]¡È£¨-1£¬-\frac{1}{2}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸