精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2 , 且对x∈R,恒有f(x﹣2)<f(x),则实数a的取值范围为(
A.
B.
C.
D.

【答案】C
【解析】解:定义域为R的函数f(x)是奇函数,
当x≥0时,f(x)的图象如图所示:
当x<0时,函数的最大值为a2
∵对x∈R,恒有f(x﹣2)<f(x),
∴2小于区间长度3a2﹣(﹣a2),
∴2<3a2﹣(﹣a2),解得﹣ <a<
故选C.

【考点精析】掌握函数奇偶性的性质是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)<1(x∈R),则不等式f(x)>x+1的解集为(
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆=1(a>b>0)的左右焦点分别为F1(-c,0)、F2(c,0),过椭圆中心的弦PQ满足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面积为1.

(1)求椭圆的方程;

(2)直线l不经过点A(0,1),且与椭圆交于M,N两点,若以MN为直径的圆经过点A,求证:直线l过定点,并求出该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)若,且曲线处的切线过原点,求直线的方程;

(2)求的极值;

(3)若函数有两个极值点 ,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且a= ,求函数f(x)的单调增区间;
(2)在(1)中当a=0时,函数y=f(x)的图象上任意不同的两点A(x1 , y1),B(x2 , y2),线段AB的中点为C(x0 , y0),记直线AB的斜率为k,试证明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且对任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,.

(1)证明:平面平面

(2)求正四棱锥的高,使得该四棱锥的体积是三棱锥体积的4倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(
A.(0, ]
B.(0, ]∪[
C.(0, ]
D.(0, ]∪[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)≥ ,则f(x)< + 的解集为(
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}

查看答案和解析>>

同步练习册答案