精英家教网 > 高中数学 > 题目详情
15.若f(x)=x3+x2+bx+c有极值点x1,x2且f(x1)=x1,则关于x的方程3(f(x))2+2f(x)+b=0的不同实根个数是3.

分析 求导数f′(x),由题意知x1,x2是方程3x2+2x+b=0的两根,从而关于f(x)的方程3(f(x))2+2f(x)+b=0有两个根,作出草图,由图象可得答案.

解答 解:∵f(x)=x3+x2+bx+c有极值点x1,x2
∴f′(x)=3x2+2x+b,
且x1,x2是方程3x2+2x+b=0的两根,
不妨设x2>x1
由3(f(x))2+2f(x)+b=0,
则有两个f(x)使等式成立,
x1=f(x1),x2>x1=f(x1),
如图所示:有3个交点,
故答案为:3.

点评 本题主要考查函数零点的概念、函数的极值和函数的导数之间的关系,利用是数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,有一横截面为正三角形的圆锥形容器,内部盛水的高度为h,放入一个球后,水面恰好与球相切,求球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=a2=1,$\frac{{a}_{n+2}}{{a}_{n+1}}$-$\frac{{a}_{n+1}}{{a}_{n}}$=1,则a101-a100的值为9.3326215443944×10157

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x4-4x3+tx2+6(t∈R).①若t=4,求f(x)的单调区间;②若f(x)在x=-1处取得极值,求f(x)在区间[-2,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow m=(2sin(ωx+\frac{π}{3}),1)\;,\overrightarrow{\;n}=(2cosωx,-\sqrt{3})\;(ω>0)$,函数f(x)=$\overrightarrow m•\overrightarrow n$的两条相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调递增区间;
(2)当$α∈[\frac{π}{12},\frac{7π}{12}]$时,若f(α)=$\frac{6}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某城市前些年对环保工作不重视,到去年2006年底堆积的垃圾达到100万吨,侵占大量土地,造成环境污染.估计今后
若干年还将平均每年产生8万吨新的垃圾.市政府经调查研究,决定科学治废,估计今年能处理垃圾5万吨,并且以后处理垃圾吨量将每年增加10%
(1)2009年底比2008年底垃圾量增加多少万吨?
(2)到哪一年底垃圾堆积量最多?
(3)到哪一年开始,垃圾堆积少于50万吨?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了计算运河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,则两景点B与C之间的距离为113.12(m).(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:$\sqrt{2}$=1.414,$\sqrt{3}$=1.732,$\sqrt{5}$=2.236).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-mxk(m,k∈R)定义域为(0,+∞)
(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;
(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;
(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=4x,点A(1,2),过点A任意作两条倾斜角互补的直线,分别于抛物线交于两点P,Q.证明:直线PQ的斜率为定值.

查看答案和解析>>

同步练习册答案