精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,x∈R,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最大值;
(2)解关于x的不等式f(x)≥$\frac{1}{2}$.

分析 (1)根据向量的数量积和两角和的正弦公式和正弦函数的性质即可求出,
(2)解有关三角函数的不等式即可.

解答 解:(1)∵向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,x∈R,
∴函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx=sin(x+$\frac{π}{6}$),
当x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,k∈Z时,有最大值,f(x)max=1,
(2)由(1)f(x)=sin(x+$\frac{π}{6}$),
∵f(x)≥$\frac{1}{2}$,
∴sin(x+$\frac{π}{6}$)≥$\frac{1}{2}$,
∴$\frac{π}{6}$+2kπ≤x+$\frac{π}{6}$≤$\frac{5π}{6}$+2kπ,k∈Z,
∴2kπ≤x≤$\frac{2}{3}π$+2kπ,k∈Z,
∴不等式的解集为{x|2kπ≤x≤$\frac{2}{3}π$+2kπ,k∈Z}

点评 本题考查了向量的数量积和三角函数的化简和性质以及不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{m}$=($\sqrt{2}$cos$\frac{π}{4}$,$\sqrt{2}$sin$\frac{π}{4}$),$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$$•\overrightarrow{n}$=-1.
(1)若$\overrightarrow{OD}$=(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$),且<$\overrightarrow{OD}$,$\overrightarrow{n}$>=$\frac{π}{4}$,求$\overrightarrow{n}$;
(2)若$\overrightarrow{n}$与$\overrightarrow{q}$=(1,0)夹角为$\frac{π}{2}$,△ABC的三内角A,B,C中B=$\frac{π}{3}$,设$\overrightarrow{p}$=(cosA,2cos2$\frac{C}{2}$),求|$\overrightarrow{n}$+$\overrightarrow{p}$|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若$\overrightarrow{a}$=(cosθ-2sinθ,2),$\overrightarrow{b}$=(sinθ,1).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2θ-sinθcosθ的值;
(2)若f(θ)=($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$,当θ∈[0,$\frac{π}{2}$],求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数是奇函数,且在定义域内是增函数的是(  )
A.y=x3B.y=2xC.y=sinxD.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示.
(1)求函数的解析式;
(2)将函数y=f(x)图象向上平移1个单位,再将所得图象上的点横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)在[0,$\frac{π}{2}$]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)上一点A(4,y0)到其焦点$F({\frac{p}{2},0})$的距离为6,则p=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=$\frac{3}{7}$,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:
(1)$x-\frac{4}{x-1}<1$;
 (2)|x-1|+|x+2|>4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB=1,BC=$\sqrt{2}$,AC=$\sqrt{3}$,若G为BC的中点,则$\overrightarrow{AG}$•$\overrightarrow{AC}$=2.

查看答案和解析>>

同步练习册答案