精英家教网 > 高中数学 > 题目详情
10.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=$\frac{3}{7}$,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为14.

分析 由题意作出其图象,由图可得碰撞次数.

解答 解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=$\frac{16}{21}$,第三次碰撞点为H,且DH=(1-$\frac{16}{21}$)×$\frac{3}{4}$=$\frac{5}{28}$,作图可以得到回到E点时,需要碰撞14次即可.
故答案为:14.

点评 本题考查了学生的作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展开式中,常数项为40,则$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\frac{cosA+2cosC}{cosA+2cosB}$=$\frac{b}{c}$,则△ABC是直角三角形或等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,x∈R,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最大值;
(2)解关于x的不等式f(x)≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\overrightarrow{b}$x+$\overrightarrow{a}$
(2)已知该厂技改前50吨甲产品的生产能耗为45吨标准煤.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产能耗比技改前降低了多少吨标准煤?
(参考公式:$\overrightarrow{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线3x+4y+10=0和圆$\left\{{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}}\right.$的位置关系是(  )
A.相切B.相离C.相交但不过圆心D.相交且过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线与点A,B,C,若BC|=2|BF|,且|AF|=3,则抛物线的方程是y2=3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设抛物线Γ:y2=2px(p>0)上的点M(x0,4)到焦点F的距离|MF|=$\frac{5}{4}{x}_{0}$.
(1)求抛物线Γ的方程;
(2)过点F的直线l与抛物线T相交于A,B两点,线段AB的垂直平分线l′与抛物线Γ相交于C,D两点,若$\overrightarrow{AC}•\overrightarrow{AD}$=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知空间中非零向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,并且模相等,则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$之间的关系是(  )
A.垂直B.共线C.不垂直D.以上都有可能

查看答案和解析>>

同步练习册答案