精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的首项a1=1,且对每个n∈N*,an,an+1是方程x2+3nx+bn=0的两根,则b10=224.

分析 通过根与系数的关系可知an+an+1=-3n、an•an+1=bn,进而an+2-an=-3,在an+an+1=-3n中令n=1可得a2=-4,进而利用b10=a10•a11计算即可.

解答 解:∵an,an+1是方程x2+3nx+bn=0的两根,
∴an+an+1=-3n,an•an+1=bn
∴an+1+an+2=-3(n+1),
两式相减得:an+2-an=-3(n+1)+3n=-3,
∴数列{an}中的奇数项和偶数项均构成以-3为公差的等差数列,
∵an+an+1=-3n,
∴a1+a2=-3,
∴a2=-a1-3=-1-3=-4,
∴a10=-4+4×(-3)=-16,
a11=1+5×(-3)=-14,
∴b10=a10•a11=(-16)•(-14)=224,
故答案为:224.

点评 本题考查数列的通项公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的各点横坐标缩短为原来的$\frac{1}{2}$,所得曲线的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若θ是△ABC的一个内角,且sinθcosθ=$\frac{1}{8}$,则sinθ+cosθ=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$-\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.棱长相等的三棱锥A-BCD的俯视图是边长为2的正方形,如图所示,若该几何体的另一个棱长都相等的三棱锥A′-B′C′D′纸盒内可以任意转动,则三棱锥A′-B′C′D′的棱长的最小值为(  )
A.3$\sqrt{6}$B.8C.6$\sqrt{3}$D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2+bx-3,对于给定的实数b,f(x)在区间[b-2,b+2]上有最大值M(b)和最小值m(b),记g(b)=M(b)-m(b).
(1)当b>2时,求g(b)的解析式;
(2)求g(b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,
①若B=60°,a=10,b=7,则该三角形有且有两解;
②若三角形的三边的比是3:5:7,则此三角形的最大角为120°;
③若△ABC为锐角三角形,且三边长分别为2,3,x,则x的取值范围是$\sqrt{5}<x<\sqrt{13}$.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图的程序框图,如果输入的N=10,那么输出的S=(  )
A.1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$B.1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$
C.1+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+…+$\frac{1}{10×9×…×3×2×1}$D.1+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+…+$\frac{1}{11×10×…×3×2×1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,某单位准备绿化一块直径AB=a的半圆形空地,△ABC以外地方种草,△ABC的内接正方形PQMN为一水池,其余的地方种花,设∠BAC=θ,△ABC的面积为S1,正方形PQMN的面积为S2
(Ⅰ)试用a,θ表示S1、S2
(Ⅱ)当a固定θ变化时,求θ为何值时,$\frac{S_1}{S_2}$取得最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.判断两个分类变量时彼此相关还是相互独立的常用方法中,最为精确的是(  )
A.2×2列联表B.独立性检验C.登高条形图D.其他

查看答案和解析>>

同步练习册答案