| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 两条异面直线不能确定一个平面;若两个平面有3个共线的公共点,则这两个平面相交;若a与b共面,b与c共面,则a与c不一定共面;若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外.
解答
解:在①中,两条异面直线不能确定一个平面,故①错误;
在②中,若两个平面有3个不共线的公共点,则这两个平面重合,
若两个平面有3个共线的公共点,则这两个平面相交,故②错误;
在③中,直线a,b,c,若a与b共面,b与c共面,则a与c不一定共面,
如四面体S-ABC中,SA与AB共面,AB与BC共面,但SA与BC异面,故③错误;
在④中,若直线l上有一点在平面α外,则由直线与平面的位置关系得l在平面α外,故④正确.
故选:C.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$垂直 | B. | 向量$\overrightarrow a-\overrightarrow b$与$\overrightarrow a$垂直 | ||
| C. | 向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a$垂直 | D. | 向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com