精英家教网 > 高中数学 > 题目详情

【题目】给出如下四个命题:①e >2②ln2> ③π2<3π ,正确的命题的个数为(
A.1
B.2
C.3
D.4

【答案】D
【解析】解:①要证e >2,只要证 >ln2,即2>eln2, 设f(x)=elnx﹣x,x>0,
∴f′(x)= ﹣1=
当0<x<e时,f′(x)>0,函数单调递增,
当x>e时,f′(x)<0,函数单调递减,
∴f(x)<f(e)=elne﹣e=0,
∴f(2)=eln2﹣2<0,
即2>eln2,
∴e >2,因此正确
②∵3ln2=ln8>ln2.82>lne2=2.∴ln2> ,因此正确,
③π2<42=16,3π>33=27,因此π2<3π , ③正确,
④∵2π<π2 , ∴ ,④正确;
正确的命题的个数为4个,
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},a1=2,a2=6,且满足=2(n≥2且n∈N+)

(1)证明:新数列{an+1-an}是等差数列,并求出an的通项公式

(2)令bn=,设数列{bn}的前n项和为Sn,证明:S2n-Sn<5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面,分别是的中点.

(1)求证:∥平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线 .

(1)求证:对,直线与圆总有两个不同的交点

(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为 ,乙能攻克的概率为 ,丙能攻克的概率为
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励a万元.奖励规则如下:若只有1人攻克,则此人获得全部奖金a万元;若只有2人攻克,则奖金奖给此二人,每人各得 万元;若三人均攻克,则奖金奖给此三人,每人各得 万元.设甲得到的奖金数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1判断函数是否有零点;

2设函数上是减函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)确定a与b的关系;
(2)若a≥0,试讨论函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为( )
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :“函数 在区间 上单调递减”;命题 :“存在正数 ,使得 成立”,若 为真命题,则 的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案