精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为( )
A.8
B.4
C.2
D.

【答案】B
【解析】解:抛物线y2=4 x的焦点为F( ,0),由抛物线的定义可知:|AF|=|AD|,|BC|=|BF|,

过B做BE⊥AD,

=3 ,则丨 丨=丨 丨,

∴|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,

∴直线AB的倾斜角为60°,直线AB的方程为y= (x﹣ )= x﹣3,

联立直线AB与抛物线的方程可得: ,整理得:3x2﹣10 x+9=0,

由韦达定理可知:x1+x2= ,则丨AB丨=x1+x2+p= +2 =

而原点到直线AB的距离为d= =

则三角形△AOB的面积S= 丨AB丨d= =4

∴当直线AB的倾斜角为120°时,同理可求S=4

所以答案是:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中, ADBC交于点M,设,以为基底表示

【答案】

【解析】试题分析:由A、M、D三点共线,知;由C、M、B三点共线,知

,所以,所以=

试题解析:

因为A、M、D三点共线,所以,即

因为C、M、B三点共线,所以,即

解得,所以

型】解答
束】
20

【题目】函数的最小值为.

1)求

2)若,求及此时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①e >2②ln2> ③π2<3π ,正确的命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若 是第一象限角且 ,则

②函数上是减函数;

是函数 的一条对称轴;

④函数 的图象关于点 成中心对称;

⑤设 ,则函数 的最小值是,其中正确命题的序号为 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的首项a1=1,且(n+1)a +anan+1﹣na =0对n∈N*都成立.
(1)求{an}的通项公式;、
(2)记bn=a2n﹣1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为 ,每次考B科合格的概率均为 .假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)记甲参加考试的次数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为 ,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.

查看答案和解析>>

同步练习册答案