【题目】如图所示,已知三棱锥中,底面是等边三角形,且,分别是的中点.
(1)证明:平面;
(2)若,求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)连接,因为是的中点,由等腰三角形及等边三角形的性质可得,从而利用线面垂直的判定定理可得结果;(2)先根据勾股定理证明与垂直,再以为轴建立空间直角坐标系,平面的一个法向量为,利用向量垂直数量积为零,列方程组求出平面的一个法向量,根据空间向量夹角余弦公式可求得二面角的余弦值.
试题解析:(1)连接,因为,底面等边三角形,
又因为是的中点,
所以
又因为,
所以平面.
(2)因为,
由(1)可知,
而,所以
以为原点,以的方向为轴正方向建立空间直角坐标系,如图所示,
则,,,,
由题得平面的一个法向量为.
设平面的一个法向量为
所以,即
令得
所以,
所以
由题意知二面角为锐角,
所以二面角的余弦值为.
【方法点晴】本题主要考查线面垂直的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
科目:高中数学 来源: 题型:
【题目】国家收购某种农产品的价格为120元/t,其中征税标准为每100元征收8元(称税率为8个百分点),计划可收购a万t,为减轻农民负担,决定降低税率x个百分点,预计收购量可增加2x个百分点.
(1)写出降低税率后,税收y(万元)与x的关系式;
(2)要使此项税收在税率调整后不低于原计划的78%,试确定x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此规律,第n个等式为__________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为 (为参数),曲线的极坐标方程为.
(1)求曲线和的公共点的极坐标;
(2)若为曲线上的一个动点,求到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: -=1 (a>0,b>0)的左、右焦点分别为F1,F2,点P为双曲线右支上一点,若|PF1|2=8a|PF2|,则双曲线C的离心率的取值范围为( )
A. (1,3] B. [3,+∞)
C. (0,3) D. (0,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】端午节吃粽子是我国的传统习俗,设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同,从中任意选取个.
()求三种粽子各取到个的概率.
()设表示取到的豆沙粽个数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂有6台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为.已知1名工人每月只有维修2台机器的能力(若有2台机器同时出现故障,工厂只有1名维修工人,则该工人只能逐台维修,对工厂的正常运行没有任何影响),每台机器不出现故障或出现故障时能及时得到维修,就能使该厂获得10万元的利润,否则将亏损2万元.该工厂每月需支付给每名维修工人1万元的工资.
(1)若每台机器在当月不出现故障或出现故障时,有工人进行维修(例如:3台大型机器出现故障,则至少需要2名维修工人),则称工厂能正常运行.若该厂只有1名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有2名维修工人.
(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (为实常数) .
(I)当时,求函数在上的最大值及相应的值;
(II)当时,讨论方程根的个数.
(III)若,且对任意的,都有,求
实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com