精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(1-x)-loga(1+x),其中a>0,且a≠1.
(1)判断f(x)的奇偶性;
(2)若f(
1
2
)=1
,解不等式f(x)<1.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)由函数f(x)的解析式求得f(-x)=-f(x),可得函数f(x)为奇函数.
(2)由f(
1
2
)=1求得 a=
1
3
,不等式化为 log
1
3
1+x
1-x
<1,故有0<
1+x
1-x
1
3
,即
-1<x<1
4x+2
3(x-1)
>0
,由此求得不等式的解集.
解答: 解:(1)∵函数f(x)=loga(1-x)-loga(1+x),其中a>0,且a≠1,
∴f(-x)=loga(1+x)-loga(1-x)=-[loga(1-x)-loga(1+x)]=-f(x),
故函数f(x)为奇函数.
(2)∵f(
1
2
)=loga
1
2
-loga
3
2
=loga
1
3
=1,
∴a=
1
3

不等式f(x)<1,即 log
1
3
(1+x)
-log
1
3
(1-x)
=log
1
3
1+x
1-x
<1,
∴0<
1+x
1-x
1
3

即 
1+x
1-x
>0
1+x
1-x
1
3
1+x
x-1
<0
1+x
x-1
>-
1
3

-1<x<1
4x+2
3(x-1)
>0

解得-1<x<-
1
2
,故不等式的解集为(-1,-
1
2
).
点评:本题主要考查函数的奇偶性的判断,对数的运算性质、对数不等式、分式不等式的解法,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x, x<0
g(x),  x>0
,若f(x)是奇函数,则g(2)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面内,若三角形的面积为S,周长为C,则此三角形的内切圆的半径r=
2S
C
;在空间中,三棱锥P-ABC的三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=1,利用类比推理的方法,求得此三棱锥P-ABC的内切球(球面与三棱锥的各个面均相切)的半径R=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在10个同样型号的产品中,有8个是正品,2个是次品,从中任取3个,求:
(1)其中所含次品数ξ的期望、方差;
(2)事件“含有次品”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
1
2
x-
π
3
),x∈R

(1)用“五点法”画出函数在长度为一个周期的闭区间上的简图;
(2)说明函数f(x)的图象可由y=sinx,x∈R的图象经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(3,-2),点N(x,y)为直线3x+4y-25=0上任意一点,
(1)求|MN|的最小值;
(2)求
x2+y2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算∫
 
-1
-e
1
x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一名篮球运动员投篮一次得3分,1分,0分的概率分别为a,b,c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为1,则ab的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x-a
(a∈R).若方程f(f(x))=x有解,则a的取值范围为(  )
A、(-∞,
1
4
]
B、(0,
1
8
]
C、(-∞,
1
8
]
D、[1,+∞)

查看答案和解析>>

同步练习册答案