精英家教网 > 高中数学 > 题目详情
18.(理科学生做)在长方体ABCD-A′B′C′D′中,AB=4,BC=CC′=2,求
(1)直线B′D与BC′所成角的大小;
(2)二面角A-B′D-C的余弦值.

分析 (1)建立坐标系,证明$\overrightarrow{B′D}$•$\overrightarrow{BC′}$=4+0-4=0,可得$\overrightarrow{B′D}$⊥$\overrightarrow{BC′}$,即可求出直线B′D与BC′所成角的大小;
(2)求出平面AB′D的法向量、平面B′DC的一个法向量,利用向量的夹角公式,即可求出二面角A-B′D-C的余弦值.

解答 解:(1)建立如图所示的坐标系,则D(0,0,0),A(2,0,0),B(2,4,0),C(0,4,0),B′(2,4,2),C′(0,4,2),
∴$\overrightarrow{B′D}$=(-2,-4,-2),$\overrightarrow{BC′}$=(-2,0,2),
∴$\overrightarrow{B′D}$•$\overrightarrow{BC′}$=4+0-4=0,
∴$\overrightarrow{B′D}$⊥$\overrightarrow{BC′}$,
∴直线B′D与BC′所成角的大小为90°;
(2)由(1)$\overrightarrow{B′D}$=(-2,-4,-2),$\overrightarrow{DA}$=(2,0,0),$\overrightarrow{DC}$=(0,4,0),
设平面AB′D的法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{2x=0}\\{-2x-4y-2z=0}\end{array}\right.$,取$\overrightarrow{m}$=(0,1,-2),
同理平面B′DC的一个法向量为$\overrightarrow{n}$=(1,0,-1),
∴由图形得二面角A-B′D-C的余弦值=-$\frac{2}{\sqrt{5}•\sqrt{2}}$=-$\frac{\sqrt{10}}{5}$.

点评 本题考查空间角,考查向量知识的运用,正确求出平面的法向量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在x轴正半轴上是否存在两个定点A,B,使得圆x2+y2=4上任意一点到A,B两点的距离之比为常数$\frac{1}{2}$?如果存在,求出点A,B的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.棱长为$\sqrt{2}$的正方体ABCD-A1B1C1D1内切球O,以A为顶点,以平面B1CD1,被球O所截的圆面为底面的圆锥的侧面积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,且PA=$\sqrt{6}$,则PC与平面ABCD所成角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x>0,则x+$\frac{9}{x}$+2有(  )
A.最小值6B.最小值8C.最大值4D.最大值3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足Sn=2an-2.
(1)求a1,a2,a3并由此猜想an的通项公式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)化简$\frac{sin(3π-α)•cos(α-π)•cos(4π+α)}{{sin(α-3π)•cos(\frac{π}{2}-α)•sin(\frac{π}{2}-α)}}$
(2)化简求值sin(-$\frac{π}{3}$)+2sin$\frac{4π}{3}$+3sin$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生.现将800名学生从1到800进行编号,如果抽到的是7,则从33~48这16个数中应取的数是(  )
A.40B.39C.38D.37

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知z为复数,z+2i和$\frac{z}{2-i}$均为实数,其中i是虚数单位.则复数|z|=$2\sqrt{5}$.

查看答案和解析>>

同步练习册答案