精英家教网 > 高中数学 > 题目详情
6.在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,且PA=$\sqrt{6}$,则PC与平面ABCD所成角的大小为(  )
A.30°B.45°C.60°D.90°

分析 连接AC,则∠PCA为PC与平面ABCD所成的角.求出AC即可得出tan∠PCA,从而得出答案.

解答 解:连接AC,∵PA⊥平面ABCD,
∴∠PCA为PC与平面ABCD所成的角.
∵底面ABCD是边长为1的正方形,∴AC=$\sqrt{2}$.
∴tan∠PCA=$\frac{PA}{AC}$=$\sqrt{3}$.
∴∠PCA=60°.
故选:C.

点评 本题考查了线面角的定义与计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2-2ax+lnx(a∈R),x∈(1,+∞).
(1)若函数f(x)有且只有一个极值点,求实数a的取值范围;
(2)对于函数f(x)、f1(x)、f2(x),若对于区间D上的任意一个x,都有f1(x)<f(x)<f2(x),则称函数f(x)是函数f1(x)、f2(x)在区间D上的一个“分界函数”.已知f1(x)=(1-a2)lnx,f2(x)=(1-a)x2,问是否存在实数a,使得f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”?若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若关于x的方程2x|x|-a|x|=1有三个不同实根,则实数a的取值范围为(-∞,-2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{1}$$\sqrt{x-{x}^{2}}$•dx=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.棱长为4$\sqrt{3}$的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个四面体的某个顶点上的三条棱两两垂直,这三条棱的长度分别为1、2、3,则这三条棱与此四面体的不经过这个顶点的一个面所成角大小的余弦的最大值为$\frac{3\sqrt{5}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(理科学生做)在长方体ABCD-A′B′C′D′中,AB=4,BC=CC′=2,求
(1)直线B′D与BC′所成角的大小;
(2)二面角A-B′D-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)化简:$\frac{sin(π-α)sin(3π-α)+sin(-α-π)sin(α-2π)}{sin(4π-α)sin(5π+α)}$
(2)求值:已知tanɑ=1,求$\frac{2sinα+3cosα}{4sinα-5cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线2ax+by-2=0(a>0,b>0)经过圆(x-1)2+(y-2)2=4的圆心,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4.

查看答案和解析>>

同步练习册答案