精英家教网 > 高中数学 > 题目详情
17.若关于x的方程2x|x|-a|x|=1有三个不同实根,则实数a的取值范围为(-∞,-2$\sqrt{2}$).

分析 首先进行转化,再对x进行分类讨论,由二次函数的图象以及性质得到a的范围.

解答 解:∵方程2x|x|-a|x|=1有三个不同实根,
∴函数y=2x|x|-a|x|-1有3个不同的零点,
∴y=$\left\{\begin{array}{l}{2{x}^{2}-ax-1}&{x≥0}\\{-2{x}^{2}+ax-1}&{x<0}\end{array}\right.$,
对称轴为x=$\frac{a}{4}$,与y轴交点为(0,-1)
∴a≥0时,不符合条件,
∴a<0,
且△>0
∴a∈$({-∞,-2\sqrt{2}})$,
故答案为:(-∞,-2$\sqrt{2}$)

点评 本题考查二次函数的图象以及性质,需转化思想以及分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某流程如图所示,现输入四个函数,则可以输出的函数是(  )
A.f(x)=xtanxB.f(x)=xexC.f(x)=x+2lnxD.f(x)=x-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在x轴正半轴上是否存在两个定点A,B,使得圆x2+y2=4上任意一点到A,B两点的距离之比为常数$\frac{1}{2}$?如果存在,求出点A,B的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出以下四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则$\frac{b}{a}$+$\frac{a}{b}$>2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2-ax+1≥0,则0<a≤4.
其中是真命题的有(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知平面直角坐标系中,A、B两点的坐标分别为A(2,-3)、B(4,-1).
(1)若P(x,0)是x轴上的一个动点,当△PAB的周长最短时,求x值;
(2)若C(a,0)、D(a+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,求a的值;
(3)设M、N分别为x轴、y轴上的动点,问:是否存在这样的点M(m,0)和(0,π),使四边形ABMV周长最短,若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设P为x轴上一点,它与原点及点(5,-3)等距离,则P点的坐标是(3.4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.棱长为$\sqrt{2}$的正方体ABCD-A1B1C1D1内切球O,以A为顶点,以平面B1CD1,被球O所截的圆面为底面的圆锥的侧面积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,且PA=$\sqrt{6}$,则PC与平面ABCD所成角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生.现将800名学生从1到800进行编号,如果抽到的是7,则从33~48这16个数中应取的数是(  )
A.40B.39C.38D.37

查看答案和解析>>

同步练习册答案