分析 (Ⅰ)设等差数列{an}的公差为d,根据等差数列的通项公式和求和公式,列出关于a1和d的方程组,解出a1和d,即可得到所求通项;
(Ⅱ)由等比数列的中项的性质及等差数列的通项公式和求和公式,可得9k2=k•k(2k+1),解出k.
解答 解:(Ⅰ)设等差数列{an}的公差为d,由题意可得:
$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+3d=6}\\{{a}_{1}+5d=3{a}_{1}+3d}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$.
∴{an}的通项公式为an=1+n-1=n.
(Ⅱ)由(Ⅰ)知${S}_{n}=\frac{n(n+1)}{2}$,
∵ak,a3k,S2k成等比数列.
∴${{a}_{3k}}^{2}={a}_{k}•{S}_{2k}$,
∴9k2=k•k(2k+1),
解得k=4.
点评 本题考查了等差数列的通项公式,以及求和公式,以及等比数列的中项的性质,考查了运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,e) | B. | (1,ee) | C. | (1,2e) | D. | (1,e${\;}^{\frac{1}{e}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{4}$,$\frac{7}{8}$) | C. | ($\frac{1}{4}$,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,$\frac{7}{8}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com