ÒÑÖªÊýÁÐ{an}µÄÇ°¼¸ÏîΪ£º
1
2
£¬-2£¬
9
2
£¬-8£¬
25
2
£¬-18¡­
Óù۲취д³öÂú×ãÊýÁеÄÒ»¸öͨÏʽan=
(-1)n-1
n2
2
£¬»ò(-1)n+1
n2
2
£¨×¢Ò⣬±¾Ìâ´ð°¸ÓжàÖÖ¿ÉÄÜ£¬Ö»ÒªÑ§Éú¸ø³öµÄͨÏʽ¼ÆËã³öµÄÇ°¼¸ÏîÂú×ã¾Í¿ÉÒÔÅÐÕýÈ·£©
(-1)n-1
n2
2
£¬»ò(-1)n+1
n2
2
£¨×¢Ò⣬±¾Ìâ´ð°¸ÓжàÖÖ¿ÉÄÜ£¬Ö»ÒªÑ§Éú¸ø³öµÄͨÏʽ¼ÆËã³öµÄÇ°¼¸ÏîÂú×ã¾Í¿ÉÒÔÅÐÕýÈ·£©
£®
·ÖÎö£º¸ù¾ÝÊýÁи÷ÏîµÄ½á¹¹ÌØÕ÷£¬ÊýÁеÄͨÏʽµÄ¶¨Ò壬д³öËüµÄÒ»¸öͨÏʽ£®
½â´ð£º½â£ºÓÉÓÚÊýÁÐ
1
2
£¬-2£¬
9
2
£¬-8£¬
25
2
£¬-18¡­

¿Éд³É£º
1
2
£¬-
4
2
£¬
9
2
£¬-
16
2
£¬
25
2
£¬-
36
2
¡­

µÄżÊýÏîΪ¸ºÊý£¬ÆæÊýÏîΪÕýÊý£¬Ã¿Ò»ÏîµÄ·Öĸ¶¼ÊÇ2£¬µÚnÏîµÄ·ÖĸµÈÓÚn2£¬
¹ÊËüµÄͨÏʽΪ£º(-1)n-1
n2
2
£¬»ò(-1)n+1
n2
2
£®
¹Ê´ð°¸Îª£º(-1)n-1
n2
2
£¬»ò(-1)n+1
n2
2
£¨×¢Ò⣬±¾Ìâ´ð°¸ÓжàÖÖ¿ÉÄÜ£¬Ö»ÒªÑ§Éú¸ø³öµÄͨÏʽ¼ÆËã³öµÄÇ°¼¸ÏîÂú×ã¾Í¿ÉÒÔÅÐÕýÈ·£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁеĸÅÄî¼°Æä¼òµ¥±íʾ·¨£¬ÇóÊýÁеÄͨÏʽ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

19¡¢ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=n2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒÂú×ãb1=a1£¬2b3=b4
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=an2+bn£¨a¡¢b¡ÊR£©£¬ÇÒS25=100£¬Ôòa12+a14µÈÓÚ£¨¡¡¡¡£©
A¡¢16B¡¢8C¡¢4D¡¢²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=n2+n+1£¬ÄÇôËüµÄͨÏʽΪan=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=3n+a£¬Èô{an}ΪµÈ±ÈÊýÁУ¬ÔòʵÊýaµÄֵΪ
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSnÂú×ãSn+1=kSn+2£¬ÓÖa1=2£¬a2=1£®
£¨1£©ÇókµÄÖµ¼°Í¨Ïʽan£®
£¨2£©ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸