分析 (1)推导出BE⊥CD,AE⊥CD,由此能证明CD⊥平面ABE.
(2)推导出AE⊥平面BCD,由此能求出三棱锥A-BCD的体积.
解答 证明:(1)∵三棱锥A-BCD中,△BCD为等边三角形,![]()
AC=AD,E为CD的中点,
∴BE⊥CD,AE⊥CD,
又AE∩BE=E,∴CD⊥平面ABE.
解:(2)由(1)知AE⊥CD,
又AE⊥BC,BC∩CD=C,
∴AE⊥平面BCD,
∵AB=3,CD=2,
∴三棱锥A-BCD的体积:
$V=\frac{1}{3}×{S}_{△BCD}×AE$=$\frac{1}{3}×\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}×\sqrt{6}$=$\sqrt{2}$.
点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 130 | B. | 120 | C. | 110 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<3} | B. | {x|-1<x<2} | C. | {x|-3<x<2} | D. | {x|1<x<2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com