2£®ÒÔ¡°ÉÍÖлªÊ«´Ê£¬Ñ°ÎÄ»¯»ùÒò£¬Æ·Éú»îÖ®ÃÀ¡±Îª×ÚÖ¼µÄ¡¶ÖйúÊ«´Ê´ó»á¡·£¬ÊÇÑëÊÓ¿Æ½ÌÆµµÀÍÆ³öµÄÒ»µµ´óÐÍÑݲ¥ÊÒÎÄ»¯ÒæÖǽÚÄ¿£¬Ã¿¼¾Èüʹ²·ÖΪ10³¡£¬Ã¿³¡·Ö¸öÈË×·ÖðÈüÓëÀÞÖ÷Õù°ÔÈüÁ½²¿·Ö£¬ÆäÖÐÀÞÖ÷Õù°ÔÈüÔÚ±¾³¡¸öÈË×·ÖðÈüµÄÓÅʤÕßÓëÉÏÒ»³¡ÀÞÖ÷Ö®¼ä½øÐУ¬Ò»¹²±¸ÓÐ9µÀÇÀ´ðÌ⣬ѡÊÖÇÀµ½²¢´ð¶Ô»ñµÃ1·Ö£¬´ð´í¶Ô·½µÃ1·Ö£¬µ±ÓÐÒ»¸öÑ¡ÊÖÀۼƵ÷ִﵽ5·Öʱ±ÈÈü½áÊø£¬¸ÃÑ¡ÊÖ¾ÍÊDZ¾³¡µÄÀÞÖ÷£¬ÔÚij³¡±ÈÈüÖУ¬¼×¡¢ÒÒÁ½È˽øÐÐÀÞÖ÷Õù°ÔÈü£¬Éèÿ¸öÌâÄ¿¼×´ð¶ÔµÄ¸ÅÂʶ¼Îª$\frac{3}{4}$£¬ÒÒ´ð¶ÔµÄ¸ÅÂÊΪ$\frac{5}{12}$£¬Ã¿µÀÌâÄ¿¶¼ÓÐÈËÇÀ´ð£¬ÇÒÿÈËÇÀµ½´ðÌâȨµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬¸÷Ìâ´ðÌâÇé¿ö»¥²»Ó°Ï죮
£¨¢ñ£©ÇóÇÀ´ðÒ»µÀÌâÄ¿£¬¼×µÃ1·ÖµÄ¸ÅÂÊ£»
£¨¢ò£©ÏÖÔÚǰ5ÌâÒѾ­ÇÀ´ðÍê±Ï£¬¼×µÃ2·Ö£¬ÒÒµÃ3·Ö£¬ÔÚ½ÓÏÂÀ´µÄ±ÈÈüÖУ¬Éè¼×µÄµÃ·ÖΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®

·ÖÎö £¨I£©Éè¡°ÇÀ´ðÒ»µÀÌâÄ¿£¬¼×µÃ1·Ö¡±ÎªÊ¼þA£¬ÔòʼþA·¢Éúµ±ÇÒ½öµ±¼×ÇÀµ½´ðÌâȨºó´ð¶Ô»òÒÒÇÀµ½´ðÌâȨºó´ð´í£®ÀûÓÃÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨II£©ÔÚ½ÓÏÂÀ´µÄ±ÈÈüÖУ¬¼×µÄµÃ·ÖΪ¦ÎȡֵΪ0£¬1£¬2£¬3£®P£¨¦Î=0£©=$£¨1-\frac{2}{3}£©^{2}$£¬P£¨¦Î=1£©=${∁}_{2}^{1}•\frac{2}{3}$¡Á$£¨1-\frac{2}{3}£©$¡Á$£¨1-\frac{2}{3}£©$£¬P£¨¦Î=2£©=${∁}_{3}^{2}$$£¨\frac{2}{3}£©^{2}$¡Á$£¨1-\frac{2}{3}£©^{2}$£¬P£¨¦Î=3£©=1-P£¨¦Î=0£©-P£¨¦Î=1£©-P£¨¦Î=2£©£®

½â´ð ½â£º£¨I£©Éè¡°ÇÀ´ðÒ»µÀÌâÄ¿£¬¼×µÃ1·Ö¡±ÎªÊ¼þA£¬ÔòʼþA·¢Éúµ±ÇÒ½öµ±¼×ÇÀµ½´ðÌâȨºó´ð¶Ô»òÒÒÇÀµ½´ðÌâȨºó´ð´í£®¡àP£¨A£©=$\frac{1}{2}¡Á\frac{3}{4}$+$\frac{1}{2}¡Á£¨1-\frac{5}{12}£©$=$\frac{2}{3}$£®
£¨II£©ÔÚ½ÓÏÂÀ´µÄ±ÈÈüÖУ¬¼×µÄµÃ·ÖΪ¦ÎȡֵΪ0£¬1£¬2£¬3£®
P£¨¦Î=0£©=$£¨1-\frac{2}{3}£©^{2}$=$\frac{1}{9}$£¬P£¨¦Î=1£©=${∁}_{2}^{1}•\frac{2}{3}$¡Á$£¨1-\frac{2}{3}£©$¡Á$£¨1-\frac{2}{3}£©$=$\frac{4}{27}$£¬P£¨¦Î=2£©=${∁}_{3}^{2}$$£¨\frac{2}{3}£©^{2}$¡Á$£¨1-\frac{2}{3}£©^{2}$=$\frac{4}{27}$£¬P£¨¦Î=3£©=1-$\frac{1}{9}$-$\frac{4}{27}$-$\frac{4}{27}$=$\frac{16}{27}$£®
¡à¦ÎµÄ·Ö²¼ÁУº

¦Î0123
P$\frac{1}{9}$$\frac{4}{27}$$\frac{4}{27}$$\frac{16}{27}$
E¦Î=0¡Á$\frac{1}{9}$+1¡Á$\frac{4}{27}$+2¡Á$\frac{4}{27}$+3¡Á$\frac{16}{27}$=$\frac{20}{9}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈôÖ±Ïßl¡ÎÆ½Ãæ¦Á£¬Ö±Ïßa?¦Á£¬ÔòlÓë¦ÁµÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®l¡Î¦ÁB£®lÓë¦ÁÒìÃæC£®lÓë¦ÁÏཻD£®lÓë¦ÁûÓй«¹²µã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¸ö½¹µãΪF1£¬F2£¬ËüµÄÁ½¸ö¶¥µãÊÇÏß¶ÎF1F2µÄÈýµÈ·Öµã£¬¹ý½¹µãF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬|AB|=16£¬ÇóË«ÇúÏßCµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ºÖªnΪÕýÕûÊý£¬ÊýÁÐ{an}Âú×ãan£¾0£¬4£¨n+1£©an2-nan+12=0£¬ÉèÊýÁÐ{bn}Âú×ãbn=$\frac{{{a}_{n}}^{2}}{{t}^{n}}$
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{{a}_{n}}{\sqrt{n}}$}ΪµÈ±ÈÊýÁУ»
£¨2£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóʵÊýtµÄÖµ£º
£¨3£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ç°nÏîºÍΪSn£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¾ù´æÔÚm¡ÊN*£¬Ê¹µÃ8a12Sn-a14n2=16bm³ÉÁ¢£¬ÇóÂú×ãÌõ¼þµÄËùÓÐÕûÊýa1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚÇø¼ä[-1£¬1]ÉÏÈÎȡһ¸öÊýa£¬ÔòÇúÏßy=$\frac{2}{3}$x3-$\frac{1}{2}$x2ÔÚµãx=a´¦µÄÇÐÏßµÄÇãб½ÇΪÈñ½ÇµÄ¸ÅÂÊΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®É躯Êýf£¨x£©=|lgx|£¬Èôf£¨a£©=f£¨b£©£¬ÆäÖÐ0£¼a£¼b£¬Ôòa+bȡֵ·¶Î§ÊÇ£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÈýÀâ×¶A-BCDÖУ¬¡÷BCDΪµÈ±ßÈý½ÇÐΣ¬AC=AD£¬EΪCDµÄÖе㣻
£¨1£©ÇóÖ¤£ºCD¡ÍÆ½ÃæABE£»
£¨2£©ÉèAB=3£¬CD=2£¬ÈôAE¡ÍBC£¬ÇóÈýÀâ×¶A-BCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£®Èôa=bcosC+csinB£¬ÇÒ¡÷ABCµÄÃæ»ýΪ1+$\sqrt{2}$£®ÔòbµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Èô¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ12¦Ð£¬ÔòËüµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®18¦Ð+16B£®20¦Ð+16C£®22¦Ð+16D£®24¦Ð+16

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸