【题目】已知圆
:
.
(1)直线
过点
,被圆
截得的弦长为
,求直线
的方程;
(2)直线
的的斜率为1,且
被圆
截得弦
,若以
为直径的圆过原点,求直线
的方程.
【答案】(1)
(2)![]()
【解析】分析:(1)确定圆心坐标与半径,对斜率分类讨论,利用直线l1圆C截得的弦长为4
,即可求直线l1的方程;
(2)设直线l2的方程为y=x+b,代入圆C的方程,利用韦达定理,结合以AB为直径的圆过原点,即可求直线l2的方程
详解:圆C:
,圆心
半径为3,
(1)因直线
过点![]()
①当直线斜率不存在时
:
此时
被圆
截得的弦长为![]()
∴
:
②当直线斜率存在时
可设
方程为
即![]()
由
被圆
截得的弦长为
,则圆心C到
的距离为![]()
∴
解得![]()
∴
方程为
即![]()
由上可知
方程为:
或![]()
(2)设直线
的方程为
,代入圆C的方程得
.
即
(*)以AB为直径的圆过原点O,则OA⊥OB.
设
,
,则
,
即![]()
∴![]()
由(*)式得![]()
∴
即
,∴
或
将
或
代入(*)方程,对应的△>0.
故直线
:
或
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当
时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
,记函数
的定义域为
.
(1)求函数
的定义域
;
(2)若函数
的最大值为2,求
的值;
(3)若对于
内的任意实数
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.
年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本
万元,每生产
(百辆),需另投入成本
万元,且
.由市场调研知,每辆车售价
万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润
(万元)关于年产量
(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
(1)求λ的值及数列{an}的通项公式;
(2)设
,且数列{bn}的前n项和为Sn , 求S2n .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表: ![]()
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:
学历 | 35岁以下 | 35-55岁 | 55岁及以上 |
本科 |
| 60 | 40 |
硕士 | 80 | 40 |
|
(1)若随机抽取一人,年龄是35岁以下的概率为
,求
;
(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在区间(2,4)上存在极大值点,则实数a的取值范围是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com