精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=x2-4ax+1在(1,+∞)为增函数,则实数a的取值范围为(-∞,$\frac{1}{2}$].

分析 先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可.

解答 解:∵f(x)=x2-4ax+1的图象是开口朝上,且以直线x=2a为对称轴的抛物线,
若函数f(x)=x2-4ax+1在区间(1,+∞)上为增函数,
∴对称轴x=2a≤1,
解得:a∈(-∞,$\frac{1}{2}$],
故答案为:(-∞,$\frac{1}{2}$].

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)不等式$\frac{x-2}{x+2}≤0$的解集为{x|-2<x≤2};
(2)不等式$\frac{x+1}{x+2}<0$的解集为{x|-2<x<-1};
(3)不等式$\frac{2-x}{2+x}<0$的解集为{x|x>2或x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数yi=$\frac{1}{({x}_{i}+1)({x}_{i}+2)}$,令xi=i,则y1+y2+y3…+y20=(  )
A.$\frac{16}{37}$B.$\frac{15}{41}$C.$\frac{5}{11}$D.$\frac{19}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知y=f(x)与y=g(x)的图象如图:则F(x)=f(x)•g(x)的图象可能是下图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列两个函数是相同函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=$\frac{{x}^{2}-1}{x+1}$,g(x)=x-1
C.f(x)=x2+x+1,g(x)=t2+t+1D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知函数f(x)满足2x=$\frac{1+f(x)}{1-f(x)}$,设g(x)=f(1-x),则正确的结论是(  )
A.g(x)在R上是单调递增函数B.若g(x1)+g(x2)>0,则x1+x2>2
C.存在x0,使g(x0)=2成立D.对任意x∈R,g(x)+g(2-x)=0恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知三角形的边长分别为3$\sqrt{2}$、6、3$\sqrt{10}$,则它的最大内角的度数是(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}+1(x≤0)}\\{-x+1(x>0)}\end{array}\right.$,则f(a2)与f(a-1)的大小关系是f(a2)<f(a-1).

查看答案和解析>>

同步练习册答案