精英家教网 > 高中数学 > 题目详情

【题目】2022年第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学从全校学生中随机抽取了120名学生,对是否收看第23届平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

(1)根据上表数据,能否有的把握认为,是否收看开幕式与性别有关?

(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率.

附: ,其中.

【答案】(1)有的把握认为,收看开幕式与性别有关;

(2).

【解析】

1)利用,计算结果,通过比较即可判断能否有99%的把握认为收看开幕式与性别有关;

(Ⅱ)根据分层抽样方法得,求解选取的8人中,男生有6人,女生有2人.

8人中,选取2人的所有情况共有N7+6+5+4+3+2+128种,其中恰有一名男生一名女生的情况共有M6+612种,然后求解概率.

(1)因为

所以有的把握认为,收看开幕式与性别有关.

(2)根据分层抽样方法得,

男生人,女生人,

所以选取的8人中,男生有6人,女生有2人.

从8人中,选取2人的所有情况共有种,

其中恰有一名男生一名女生的情况共有种,

所以,所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中)在点处的切线斜率为1.

(1)用表示

(2)设,若对定义域内的恒成立,求实数的取值范围;

(3)在(2)的前提下,如果,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在轴上,且过,直线与椭圆交于,两点(,两点不是左右顶点),若直线的斜率为时,弦的中点在直线上.

(Ⅰ)求椭圆的方程.

(Ⅱ)若以,两点为直径的圆过椭圆的右顶点,则直线是否经过定点,若是,求出定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有( )

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程和直线的普通方程;

(Ⅱ)若直线与曲线相交于 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:

1)仅测试2件就找到全部二等品的概率;

2)测试的第2件产品是二等品的概率;

3)到第3次才测试出全部二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中四边形ABCD为矩形,EF分别为PAPD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF异面;直线BE与直线AF异面;直线平面PBC平面平面PAD

其中正确的结论个数为  

A. 4

B. 3

C. 2

D. 1

查看答案和解析>>

同步练习册答案