【题目】函数
.
(1)求
的单调区间;
(2)若
,求证:
.
【答案】(Ⅰ)a≤0时,
的单调递减区间是
;
时,
的单调递减区间是
,
的单调递增区间是
.(Ⅱ) 证明见解析.
【解析】试题分析:
(1)求出导数,根据对
的分类讨论,找到导数正负区间,即可求出;
(2)求出函数的最小值,转化为证
≥
,构造
,求其最小值,即可解决问题.
试题解析:
(Ⅰ)
.
当a≤0时,
,则
在
上单调递减;当
时,由
解得
,由
解得
.
即
在
上单调递减;
在
上单调递增;
综上,a≤0时,
的单调递减区间是
;
时,
的单调递减区间是
,
的单调递增区间是
.
(Ⅱ) 由(Ⅰ)知
在
上单调递减;
在
上单调递增,
则
.
要证
≥
,即证
≥
,即
+
≥0,
即证
≥
.构造函数
,则
,
由
解得
,由
解得
,
即
在
上单调递减;
在
上单调递增;
∴
,
即
≥0成立.从而
≥
成立.
科目:高中数学 来源: 题型:
【题目】如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5n mile,与小岛D相距为
n mile.小岛A对小岛B与D的视角为钝角,且
.
(Ⅰ)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;
(Ⅱ)记小岛D对小岛B与C的视角为α,小岛B对小岛C与D的视角为β,求sin(2α+β)的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜” ![]()
附:K2=
n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,已知点
的直角坐标为
,若直线
的极坐标方程为
曲线
的参数方程是
(
为参数).
(1)求直线
和曲线
的普通方程;
(2)设直线
和曲线
交于
两点,求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中各项都大于1,前n项和为Sn , 且满足an2+3an=6Sn﹣2.
(1)求数列{an}的通项公式;
(2)令bn=
,求数列{bn}的前n项和Tn;
(3)求使得Tn<
对所有n∈N*都成立的最小正整数m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )
A.18
B.24
C.36
D.48
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,
轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为
,若直线l经过点P,且倾斜角为
,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0). (Ⅰ)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x﹣2alnx+1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com