分析 由条件可得(x+2)+(y+1)=4,则$\frac{4}{x+2}$$+\frac{1}{y+1}$=$\frac{1}{4}$[(x+2)+(y+1)]($\frac{4}{x+2}$$+\frac{1}{y+1}$),展开后,运用基本不等式即可得到所求最小值,注意等号成立的条件.
解答 解:正数x,y满足x+y=1,
即有(x+2)+(y+1)=4,
则$\frac{4}{x+2}$$+\frac{1}{y+1}$=$\frac{1}{4}$[(x+2)+(y+1)]($\frac{4}{x+2}$$+\frac{1}{y+1}$)
=$\frac{1}{4}$[5+$\frac{x+2}{y+1}$+$\frac{4(y+1)}{x+2}$]
≥$\frac{1}{4}$[5+2$\sqrt{\frac{x+2}{y+1}•\frac{4(y+1)}{x+2}}$]=$\frac{1}{4}$×(5+4)=$\frac{9}{4}$,
当且仅当x=2y=$\frac{2}{3}$时,取得最小值$\frac{9}{4}$.
故答案为:$\frac{9}{4}$.
点评 本题考查了“乘1法”和基本不等式的性质,考查了变形的能力,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,1] | B. | (1,2) | C. | (-3,0] | D. | [1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com