11£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd²»Îª0£¬ÇÒ${a_{k_1}}$£¬${a_{k_2}}$£¬¡­£¬${a_{k_n}}$£¬¡­£¨k1£¼k2£¼¡­£¼kn£¼¡­£©³ÉµÈ±ÈÊýÁУ¬¹«±ÈΪq£®
£¨1£©Èôk1=1£¬k2=3£¬k3=8£¬Çó$\frac{a_1}{d}$µÄÖµ£»
£¨2£©µ±$\frac{a_1}{d}$ΪºÎֵʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ»
£¨3£©ÈôÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬ÇÒ¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ${a_n}+{a_{k_n}}£¾2{k_n}$ºã³ÉÁ¢£¬Çóa1µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÒÑÖªµÃ£ºa1£¬a3£¬a8³ÉµÈ±ÈÊýÁУ¬´Ó¶ø4d2=3a1d£¬ÓÉ´ËÄÜÇó³ö$\frac{a_1}{d}$µÄÖµ£®
£¨2£©ÉèÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬Ôò${k_2}^2={k_1}{k_3}$£¬ÍƵ¼³ö$\frac{a_1}{d}=1$£¬´Ó¶ø${a_{k_n}}={k_n}d$£¬½ø¶ø${k_n}={k_1}{q^{n-1}}$£®Óɴ˵õ½µ±$\frac{a_1}{d}=1$ʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®
£¨3£©ÓÉÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬a1=d£¬${k_n}={k_1}{q^{n-1}}£¨q£¾1£©$£®µÃµ½${a_1}£¾\frac{{2{k_1}{q^{n-1}}}}{{n+{k_1}{q^{n-1}}}}$£¬$0£¼\frac{1}{a_1}£¼\frac{{n+{k_1}{q^{n-1}}}}{{2{k_1}{q^{n-1}}}}=\frac{1}{2}+\frac{q}{{2{k_1}}}\frac{n}{q^n}$ºã³ÉÁ¢£¬ÔÙÖ¤Ã÷¶ÔÓÚÈÎÒâµÄÕýʵÊý¦Å£¨0£¼¦Å£¼1£©£¬×Ü´æÔÚÕýÕûÊýn1£¬Ê¹µÃ$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£®
ÒªÖ¤$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£¬¼´Ö¤lnn1£¼n1lnq+ln¦Å£®ÓÉ´ËÄÜÇó³öa1µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£ºa1£¬a3£¬a8³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ${£¨{a_1}+2d£©^2}={a_1}£¨{a_1}+7d£©$£¬¡­2·Ö
ÕûÀí¿ÉµÃ£º4d2=3a1d£®
ÒòΪd¡Ù0£¬ËùÒÔ$\frac{a_1}{d}=\frac{4}{3}$£® ¡­4·Ö
£¨2£©ÉèÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬Ôò${k_2}^2={k_1}{k_3}$£®
ÓÖÒòΪ${a_{k_1}}$£¬${a_{k_2}}$£¬${a_{k_3}}$³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ$[{{a_1}+£¨{k_1}-1£©d}][{{a_1}+£¨{k_3}-1£©d}]={[{{a_1}+£¨{k_2}-1£©d}]^2}$£®
ÕûÀí£¬µÃ${a_1}£¨2{k_2}-{k_1}-{k_3}£©=d£¨{k_1}{k_3}-{k_2}^2-{k_1}-{k_3}+2{k_2}£©$£®
ÒòΪ${k_2}^2={k_1}{k_3}$£¬ËùÒÔa1£¨2k2-k1-k3£©=d£¨2k2-k1-k3£©£®
ÒòΪ2k2¡Ùk1+k3£¬ËùÒÔa1=d£¬¼´$\frac{a_1}{d}=1$£®¡­6·Ö
µ±$\frac{a_1}{d}=1$ʱ£¬an=a1+£¨n-1£©d=nd£¬ËùÒÔ${a_{k_n}}={k_n}d$£®
ÓÖÒòΪ${a_{k_n}}={a_{k_1}}{q^{n-1}}={k_1}d{q^{n-1}}$£¬ËùÒÔ${k_n}={k_1}{q^{n-1}}$£®
ËùÒÔ$\frac{{{k_{n+1}}}}{k_n}=\frac{{{k_1}{q^n}}}{{{k_1}{q^{n-1}}}}=q$£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®
×ÛÉÏ£¬µ±$\frac{a_1}{d}=1$ʱ£¬ÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ®¡­8·Ö
£¨3£©ÒòΪÊýÁÐ{kn}ΪµÈ±ÈÊýÁУ¬ÓÉ£¨2£©Öªa1=d£¬${k_n}={k_1}{q^{n-1}}£¨q£¾1£©$£®
${a_{k_n}}={a_{k_1}}{q^{n-1}}={k_1}d{q^{n-1}}={k_1}{a_1}{q^{n-1}}$£¬an=a1+£¨n-1£©d=na1£®
ÒòΪ¶ÔÓÚÈÎÒân¡ÊN*£¬²»µÈʽ${a_n}+{a_{k_n}}£¾2{k_n}$ºã³ÉÁ¢£®
ËùÒÔ²»µÈʽ$n{a_1}+{k_1}{a_1}{q^{n-1}}£¾2{k_1}{q^{n-1}}$£¬
¼´${a_1}£¾\frac{{2{k_1}{q^{n-1}}}}{{n+{k_1}{q^{n-1}}}}$£¬$0£¼\frac{1}{a_1}£¼\frac{{n+{k_1}{q^{n-1}}}}{{2{k_1}{q^{n-1}}}}=\frac{1}{2}+\frac{q}{{2{k_1}}}\frac{n}{q^n}$ºã³ÉÁ¢£®¡­10·Ö
ÏÂÃæÖ¤Ã÷£º¶ÔÓÚÈÎÒâµÄÕýʵÊý¦Å£¨0£¼¦Å£¼1£©£¬×Ü´æÔÚÕýÕûÊýn1£¬Ê¹µÃ$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£®
ÒªÖ¤$\frac{n_1}{{{q^{n_1}}}}£¼¦Å$£¬¼´Ö¤lnn1£¼n1lnq+ln¦Å£®
ÒòΪ$lnx¡Ü\frac{1}{e}x£¼\frac{1}{2}x$£¬Ôò$ln{n_1}=2ln{n_1}^{\frac{1}{2}}£¼{n_1}^{\frac{1}{2}}$£¬
½â²»µÈʽ${n_1}^{\frac{1}{2}}£¼{n_1}lnq+ln¦Å$£¬¼´${£¨{n_1}^{\frac{1}{2}}£©^2}lnq-{n_1}^{\frac{1}{2}}+ln¦Å£¾0$£¬
¿ÉµÃ${n_1}^{\frac{1}{2}}£¾\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}$£¬ËùÒÔ${n_1}£¾{£¨\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}£©^2}$£®
²»·ÁÈ¡${n_0}=[{{{£¨\frac{{1+\sqrt{1-4lnqln¦Å}}}{2lnq}£©}^2}}]+1$£¬Ôòµ±n1£¾n0ʱ£¬Ô­Ê½µÃÖ¤£®
ËùÒÔ$0£¼\frac{1}{a_1}¡Ü\frac{1}{2}$£¬ËùÒÔa1¡Ý2£¬¼´µÃa1µÄȡֵ·¶Î§ÊÇ[2£¬+¡Þ£©£® ¡­16·Ö

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄÊ×ÏîÓ빫²îµÄ±ÈÖµµÄÇ󷨣¬¿¼²éÂú×ãµÈ±ÈÊýÁеĵȲîÊýÁеÄÊ×ÏîÓ빫²îµÄ±ÈÖµµÄÈ·¶¨£¬¿¼²éÊýÁеÄÊ×ÏîµÄȡֵ·¶Î§µÄÇ󷨣¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άҪÇó½Ï¸ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¹«±È²»Îª1µÄµÈ±ÈÊýÁÐ{an}µÄǰ5Ïî»ýΪ243£¬ÇÒ2a3Ϊ3a2ºÍa4µÄµÈ²îÖÐÏ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=bn-1•log3an+2£¨n¡Ý2ÇÒn¡ÊN*£©£¬ÇÒb1=1£¬ÇóÊýÁÐ$\left\{{\frac{£¨n-1£©!}{{{b_{n+1}}}}}\right\}$µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èô¡÷ABCÖУ¬Èý±ßa£¬b£¬cÂú×ãa£ºb£ºc=3£º5£ºx£¬ÇÒ¡ÏC=120¡ã£¬Ôòx=7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÕýÊýx£¬yÂú×ãx+y=1£¬Ôò$\frac{4}{x+2}$$+\frac{1}{y+1}$µÄ×îСֵΪ$\frac{9}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¡¶¾ÅÕÂËãÊõ¡·Öеġ°Öñ¾Å½Ú¡±ÎÊÌ⣺ÏÖÓÐÒ»¸ù9½ÚµÄÖñ×Ó£¬×ÔÉ϶øÏ¸÷½ÚµÄÈÝ»ý³ÉµÈ²îÊýÁУ¬ÉÏÃæ4½ÚµÄÈÝ»ý¹²3Éý£¬ÏÂÃæ3½ÚµÄÈÝ»ý¹²4Éý£¬Ôò¸ÃÖñ×Ó×îÉÏÃæÒ»½ÚµÄÈÝ»ýΪ$\frac{13}{22}$Éý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬B={x|x2-x-6=0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{1}B£®{2}C£®{3}D£®{2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£©£¬$\overrightarrow{b}$=£¨-2£¬y£©£¬ÇÒ$\overrightarrow a¡Î\overrightarrow b$£¬Ôò|3$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÎÒ¹úÉÏÊÇÊÀ½çÑÏÖØÈ±Ë®µÄ¹ú¼Ò£¬³ÇÊÐȱˮÎÊÌâ½ÏΪͻ³ö£¬Ä³ÊÐÕþ¸®ÎªÁ˹ÄÀø¾ÓÃñ½ÚÔ¼ÓÃË®£¬¼Æ»®ÔÚ±¾ÊÐÊÔÐоÓÃñÉú»îÓÃË®¶¨¶î¹ÜÀí£¬¼´È·¶¨Ò»¸öºÏÀíµÄ¾ÓÃñÔÂÓÃË®Á¿±ê×¼x£¨¶Ö£©£¬ÓÃË®Á¿²»³¬¹ýxµÄ²¿·Ö°´Æ½¼ÛÊÕ·Ñ£¬³¬¹ýxµÄ²¿·Ö°´Òé¼ÛÊÕ·Ñ£¬ÎªÁËÁ˽âÈ«ÊÐÃñÔÂÓÃË®Á¿µÄ·Ö²¼Çé¿ö£¬Í¨¹ý³éÑù£¬»ñµÃÁË100λ¾ÓÃñijÄêµÄÔÂÓÃË®Á¿£¨µ¥Î»£º¶Ö£©£¬½«Êý¾Ý°´ÕÕ[0£¬0.5£©£¬[0.5£¬1£©£¬¡­£¬[4£¬4.5]·Ö³É9×飬֯³ÉÁËÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©ÇóÖ±·½Í¼ÖÐaµÄÖµ£»
£¨¢ò£©ÒÑÖª¸ÃÊÐÓÐ80Íò¾ÓÃñ£¬¹À¼ÆÈ«ÊоÓÃñÖÐÔ¾ùÓÃË®Á¿²»µÍÓÚ3¶ÖµÄÈËÊý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ó£©Èô¸ÃÊÐÕþ¸®Ï£Íûʹ85%µÄ¾ÓÃñÿÔµÄÓÃË®Á¿²»³¬¹ý±ê×¼x£¨¶Ö£©£¬¹À¼ÆxµÄÖµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®·½³Ìlnx+2x=6µÄ¸ùËùÔÚµÄÇø¼äΪ£¨¡¡¡¡£©
A£®£¨2£¬2.25£©B£®£¨2.25£¬2.5£©C£®£¨2.5£¬2.75£©D£®£¨2.75£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸