精英家教网 > 高中数学 > 题目详情
20.我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

分析 (Ⅰ)由频率分布直方图中小矩形的面积之和为1,能求出a.
(Ⅱ)由频率分布直方图求出100位居民每人月用水量不低于3吨的人数的频率,由此能估计全市80万居民中月均用水量不低于3吨的人数.
(Ⅲ)求出前6组的频率之和为0.88>0.85,前5组的频率之和为0.73<0.85,从而得到2.5≤x<3,由此能估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

解答 解:(Ⅰ)由频率分布直方图,
可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,
解得a=0.30.
(Ⅱ)由频率分布直方图可知,
100位居民每人月用水量不低于3吨的人数为(0.12+0.08+0.04)×0.5=0.12,
由以上样本频率分布,
可以估计全市80万居民中月均用水量不低于3吨的人数为800000×0.12=96000.
(Ⅲ)∵前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,
而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3
由0.3×(x-2.5)=0.85-0.73,解得x=2.9,
因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.我国古代数学典籍《九章算术》“盈不足”中有一道问题:“今有垣高九尺,瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d不为0,且${a_{k_1}}$,${a_{k_2}}$,…,${a_{k_n}}$,…(k1<k2<…<kn<…)成等比数列,公比为q.
(1)若k1=1,k2=3,k3=8,求$\frac{a_1}{d}$的值;
(2)当$\frac{a_1}{d}$为何值时,数列{kn}为等比数列;
(3)若数列{kn}为等比数列,且对于任意n∈N*,不等式${a_n}+{a_{k_n}}>2{k_n}$恒成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2+x-6<0},B={x|3x>1},则A∩(∁RB)=(  )
A.(-3,1]B.(1,2)C.(-3,0]D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别为a,b,c
(1)若a,b,c成等比数列,$cosB=\frac{12}{13}$,求$\frac{cosA}{sinA}+\frac{cosC}{sinC}$的值;
(2)若A,B,C成等差数列,且b=2,设A=α,△ABC的周长为l,求l=f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为(  )
A.$\frac{{1+\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{4}$C.$\sqrt{\frac{{1+\sqrt{5}}}{2}}$D.$\frac{{\sqrt{3+\sqrt{5}}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|x+1|+|x-1|.
(Ⅰ)求不等式f(x)<4的解集;
(Ⅱ)若不等式f(x)-|a-1|<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x2<2x},B={x|x-1<0},则A∩B=(  )
A.(-∞,-1)B.(-∞,1)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},则P∩(∁RQ)=(  )
A.[0,3]B.(0,2]C.[0,2)D.(0,3]

查看答案和解析>>

同步练习册答案