精英家教网 > 高中数学 > 题目详情
5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为(  )
A.$\frac{{1+\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{4}$C.$\sqrt{\frac{{1+\sqrt{5}}}{2}}$D.$\frac{{\sqrt{3+\sqrt{5}}}}{2}$

分析 利用点F2到直线l的距离等于实半轴的长,可得$\frac{|2bc|}{\sqrt{{b}^{2}+{c}^{2}}}$=a,得出a与c之间的等量关系,进而求出离心率.

解答 解:由题意,直线l的方程为y=$\frac{b}{c}$x+b,即bx-cy+bc=0,
∵点F2到直线l的距离等于实半轴的长,
∴$\frac{|2bc|}{\sqrt{{b}^{2}+{c}^{2}}}$=a,
∴4(c2-a2)c2=a2(2c2-a2),
∴4e4-6e2+1=0,
∵e>1,∴e=$\frac{\sqrt{3+\sqrt{5}}}{2}$,
故选D.

点评 本题考查双曲线的方程与性质,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.(x2-3x+3)3的展开式中,x项的系数为-81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={1,2,3},B={x|x2-x-6=0},则A∩B=(  )
A.{1}B.{2}C.{3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知-1,a1,a2,-9成等差数列,-9,b1,b2,b3,-1成等比数列,则b2(a2-a1)的值为(  )
A.8B.-8C.±8D.$±\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:(x-1)2+(y-2)2=2与y轴在第二象限所围区域的面积为S,直线y=3x+b分圆C的内部为两部分,其中一部分的面积也为S,则b=(  )
A.-1±$\sqrt{10}$B.1$±\sqrt{10}$C.-1-$\sqrt{10}$D.1-$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若$g(x)=f(x),x∈[{-\frac{π}{2},\frac{π}{2}}]$,画出函数y=g(x)的图象,讨论y=g(x)-m(m∈R)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a,b>0)右支上一点,F是右焦点,若△AOF(O是坐标原点)是等边三角形,则该双曲线离心率e为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

同步练习册答案