精英家教网 > 高中数学 > 题目详情
10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

分析 (Ⅰ)连结BD交AC于E,连结ME,推导出ME∥SB,由此能证明SB∥平面ACM.
(Ⅱ)推导出CN为点C到平面AMN的距离,由此能求出点C到平面AMN的距离.

解答 证明:(Ⅰ)连结BD交AC于E,连结ME.
∵ABCD是正方形,∴E是BD的中点.
∵M是SD的中点,∴ME是△DSB的中位线.
∴ME∥SB.  …(3分)
又∵ME?平面ACM,SB?平面ACM,
∴SB∥平面ACM.  …(5分)
解:(Ⅱ)由条件有DC⊥SA,DC⊥DA,
∴DC⊥平面SAD,∴AM⊥DC.
又∵SA=AD,M是SD的中点,∴AM⊥SD.
∴AM⊥平面SDC.∴SC⊥AM.…(8分)
由已知SC⊥AN,∴SC⊥平面AMN.
于是CN⊥面AMN,则CN为点C到平面AMN的距离           …(9分)
在Rt△SAC中,$SA=2,AC=2\sqrt{2},SC=\sqrt{S{A^2}+A{C^2}}=2\sqrt{3}$,
于是$A{C^2}=CN•SC⇒CN=\frac{{4\sqrt{3}}}{3}$
∴点C到平面AMN的距离为$\frac{{4\sqrt{3}}}{3}$.  …(12分)

点评 本题考查线面平行的证明,考查点到直线的距离求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{{a{x^2}+bx}}{e^x}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,设函数$g(x)=min\left\{{f(x),x-\frac{1}{x}}\right\}(x>0)$,若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{2}{x}-alnx({a∈R}),f(x)={x^2}$+g(x).
(1)试判断g(x)的单调性;
(2)若f(x)在区间(0,1)上有极值,求实数a的取值范围;
(3)当a>0时,若f(x)有唯一的零点x0,试求[x0]的值.(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2,[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为(  )
A.$\frac{{1+\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{4}$C.$\sqrt{\frac{{1+\sqrt{5}}}{2}}$D.$\frac{{\sqrt{3+\sqrt{5}}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有
①y=$\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是(  )
A.$\frac{3π}{10}$B.$\frac{π}{20}$C.$\frac{3π}{20}$D.$\frac{π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f(0)=f(1)=0,且对任意x1,x2∈[0,1]都有|f(x1)-f(x2)|≤$\frac{1}{3}$|x1-x2|,则对下列四个结论:
①若f(1-x)=f(x)且0≤x≤$\frac{1}{2}$时,f(x)=$\frac{1}{20}$x(x-$\frac{1}{2}$),则当$\frac{1}{2}$<x≤1时,f(x)=$\frac{1}{20}$(1-x)($\frac{1}{2}$-x);
②若对?x∈[0,1]都有f(1-x)=-f(x),则y=f(x)至少有3个零点;
③对?x∈[0,1],|f(x)|≤$\frac{1}{6}$恒成立;
④对?x1,x2∈[0,1],|f(x1)-f(x2)|≤$\frac{1}{6}$恒成立.
其中正确的结论个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案