精英家教网 > 高中数学 > 题目详情
19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=(  )
A.215°B.225°C.235°D.245°

分析 利用诱导公式,任意角的三角函数的定义,求得α的值.

解答 解:∵角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),
由三角函数定义得cosα=sin215°=cos235°,sinα=cos215°=sin235°,∴α=235°,
故选:C.

点评 本题主要考查诱导公式,任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,焦点到相应准线的距离为1.
(1)求椭圆的标准方程;
(2)若P为椭圆上的一点,过点O作OP的垂线交直线$y=\sqrt{2}$于点Q,求$\frac{1}{{O{P^2}}}+\frac{1}{{O{Q^2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
 分组 频数 频率
[50,60) 5 0.05
[60,70) a 0.20
[70,80) 35 b
[80,90) 25 0.25
[90,100) 15 0.15
 合计 100 1.00
( I)求a,b的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若$g(x)=f(x),x∈[{-\frac{π}{2},\frac{π}{2}}]$,画出函数y=g(x)的图象,讨论y=g(x)-m(m∈R)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),g(x)若的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时,$f(x)=\frac{1}{6}{x^2}-\frac{1}{2}a{x^2}+x$,在x∈(-1,2)上为“凸函数”,则函数f(x)在(-1,2)上结论正确的是(  )
A.既有极大值,也有极小值B.有极大值,没有极小值
C.没有极大值,有极小值D.既无极大值,也没有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且C=2A.
(Ⅰ)求a,b,c;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=2,cosB=$\frac{1}{3}$,点D在线段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的长;
(2)若BD=2DC,△ADC的面积为$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,且Sn=-1+2an
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=log2an+1,且数列{bn}的前n项和为Tn,求$\frac{1}{{T}_{1}}+\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$.

查看答案和解析>>

同步练习册答案