精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且C=2A.
(Ⅰ)求a,b,c;
(Ⅱ)求△ABC的面积.

分析 (Ⅰ)由已知得a=b-1,c=b+1,由余弦定理得a2=b2+c2-2bccosA,结合正弦定理即可求a,b,c的值.
(Ⅱ)由(Ⅰ)中的边长,利用余弦定理得a2=b2+c2-2bccosA求sinA,即可求△ABC的面积.

解答 解:(Ⅰ)由已知得a=b-1,c=b+1,由余弦定理得a2=b2+c2-2bccosA
整理得:b+4=2(b+1)cosA …①
由C=2A,得sinC=sin2A=2sinAcosA
由正弦定理得c=2acosA,即cosA=$\frac{c}{2a}=\frac{b+1}{2(b-1)}$…②
由①②整理得:b=5,
∴a=4,c=6;
(Ⅱ)由(Ⅰ)得cosA=$\frac{c}{2a}=\frac{b+1}{2(b-1)}$=$\frac{3}{4}$
∴sinA=$\sqrt{1-co{s}^{2}A}=\frac{\sqrt{7}}{4}$,
故得△ABC的面积$S=\frac{1}{2}bcsinA=\frac{15\sqrt{7}}{4}$.

点评 本题考查了等差数列的性质、正余弦定理的灵活运用能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是(  )
A.$\frac{3π}{10}$B.$\frac{π}{20}$C.$\frac{3π}{20}$D.$\frac{π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的概念,内容涉及方程、几何、数列、面积、体积的计算等多方面.书的第6卷19题,“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀变细(各节容量可视为等差数列),则中间剩下的两节容量是多少升(  )
A.$2\frac{23}{66}$B.$2\frac{3}{22}$C.$2\frac{61}{66}$D.$1\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex+ax+b(a,b∈R)在x=ln2处的切线方程为y=x-2ln2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x>0,k≤2时,求证:(k-x)f'(x)<x+1(其中f'(x)为f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tan(π+θ)=2,则$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f(0)=f(1)=0,且对任意x1,x2∈[0,1]都有|f(x1)-f(x2)|≤$\frac{1}{3}$|x1-x2|,则对下列四个结论:
①若f(1-x)=f(x)且0≤x≤$\frac{1}{2}$时,f(x)=$\frac{1}{20}$x(x-$\frac{1}{2}$),则当$\frac{1}{2}$<x≤1时,f(x)=$\frac{1}{20}$(1-x)($\frac{1}{2}$-x);
②若对?x∈[0,1]都有f(1-x)=-f(x),则y=f(x)至少有3个零点;
③对?x∈[0,1],|f(x)|≤$\frac{1}{6}$恒成立;
④对?x1,x2∈[0,1],|f(x1)-f(x2)|≤$\frac{1}{6}$恒成立.
其中正确的结论个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sinωx(?>0)的图象向右平移$\frac{π}{12}$个单位得到函数y=g(x)的图象,并且函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减,则实数ω的值为(  )
A.$\frac{7}{4}$B.$\frac{3}{2}$C.2D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案