20£®ÒÑÖª²»ºãΪÁãµÄº¯Êýf£¨x£©ÔÚ¶¨ÒåÓò[0£¬1]ÉϵÄͼÏóÁ¬Ðø²»¼ä¶Ï£¬Âú×ãÌõ¼þf£¨0£©=f£¨1£©=0£¬ÇÒ¶ÔÈÎÒâx1£¬x2¡Ê[0£¬1]¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|£¬Ôò¶ÔÏÂÁÐËĸö½áÂÛ£º
¢ÙÈôf£¨1-x£©=f£¨x£©ÇÒ0¡Üx¡Ü$\frac{1}{2}$ʱ£¬f£¨x£©=$\frac{1}{20}$x£¨x-$\frac{1}{2}$£©£¬Ôòµ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{1}{20}$£¨1-x£©£¨$\frac{1}{2}$-x£©£»
¢ÚÈô¶Ô?x¡Ê[0£¬1]¶¼ÓÐf£¨1-x£©=-f£¨x£©£¬Ôòy=f£¨x£©ÖÁÉÙÓÐ3¸öÁãµã£»
¢Û¶Ô?x¡Ê[0£¬1]£¬|f£¨x£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£»
¢Ü¶Ô?x1£¬x2¡Ê[0£¬1]£¬|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£®
ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö ¸ù¾ÝÒÑÖªÖÐf£¨0£©=f£¨1£©=0£¬ÇÒ¶ÔÈÎÒâx1£¬x2¡Ê[0£¬1]¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|£¬ÖðÒ»·ÖÎöËĸö½áÂÛµÄÕæ¼Ù£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£ºÓÉf£¨1-x£©=f£¨x£©µÃº¯Êýf£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=$\frac{1}{2}$¶Ô³Æ£¬
Èô0¡Üx¡Ü$\frac{1}{2}$ʱ£¬f£¨x£©=$\frac{1}{20}$x£¨x-$\frac{1}{2}$£©£¬Ôòµ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{1}{20}$£¨1-x£©£¨$\frac{1}{2}$-x£©£¬¹Ê¢ÙÕýÈ·£»
¡ßf£¨1-x£©=-f£¨x£©£¬¹Êº¯ÊýͼÏó¹ØÓÚ£¨$\frac{1}{2}$£¬0£©¶Ô³Æ£¬
ÓÖÓÉf£¨0£©=f£¨1£©=0£¬
¹Êº¯Êýf£¨x£©ÖÁÉÙÓÐ3¸öÁãµã0£¬$\frac{1}{2}$£¬1£®¹Ê¢ÚÕýÈ·£»
¡ßµ±0¡Üx¡Ü$\frac{1}{2}$ʱ£¬|f£¨x£©|¡Ü$\frac{1}{3}$x¡Ü$\frac{1}{6}$£»
µ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬Ôò1-x¡Ü$\frac{1}{2}$£¬
|f£¨x£©|=|f£¨x£©-f£¨1£©|¡Ü$\frac{1}{3}$£¨1-x£©¡Ü$\frac{1}{3}¡Á\frac{1}{2}$=$\frac{1}{6}$£®
¡à?x¡Ê[0£¬1]£¬|f£¨x£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£¬¹Ê¢ÛÕýÈ·£¬
Éè?x1£¬x2¡Ê[0£¬1]£¬µ±|x1-x2|¡Ü$\frac{1}{2}$ʱ£¬|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|¡Ü$\frac{1}{6}$£¬
µ±|x1-x2|£¾$\frac{1}{2}$ʱ£¬|f£¨x1£©-f£¨x2£©|=|f£¨x1£©-f£¨0£©+f£¨1£©-f£¨x2£©|
¡Ü|f£¨x1£©-f£¨0£©|+|f£¨1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-0|+$\frac{1}{3}$|1-x2|
=$\frac{1}{3}$¡Á1+$\frac{1}{3}$£¨1-x2£©=$\frac{1}{3}$-$\frac{1}{3}$£¨x2-x1£©¡Ü$\frac{1}{3}$-$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£®¹Ê¢ÜÕýÈ· 
¹ÊÑ¡D£®

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄ¶Ô³ÆÐÔ£¬º¯Êýºã³ÉÁ¢£¬º¯ÊýµÄÁãµã£¬¾ø¶ÔÖµÈý½Ç²»µÈʽµÈ֪ʶµã£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬SA¡Íµ×ÃæABCD£¬SA=AB=2£¬µãMÊÇSDµÄÖе㣬AN¡ÍSC£¬ÇÒ½»SCÓÚµãN£®
£¨¢ñ£© ÇóÖ¤£ºSB¡ÎÆ½ÃæACM£» 
£¨¢ò£© ÇóµãCµ½Æ½ÃæAMNµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß³¤ÊÇa£¬b£¬c¹«²îΪ1µÄµÈ²îÊýÁУ¬ÇÒC=2A£®
£¨¢ñ£©Çóa£¬b£¬c£»
£¨¢ò£©Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=2£¬cosB=$\frac{1}{3}$£¬µãDÔÚÏß¶ÎBCÉÏ£®
£¨1£©Èô¡ÏADC=$\frac{3}{4}$¦Ð£¬ÇóADµÄ³¤£»
£¨2£©ÈôBD=2DC£¬¡÷ADCµÄÃæ»ýΪ$\frac{4}{3}$$\sqrt{2}$£¬Çó$\frac{sin¡ÏBAD}{sin¡ÏCAD}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµãAÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¬b£¾0£©ÓÒÖ§ÉÏÒ»µã£¬FÊÇÓÒ½¹µã£¬Èô¡÷AOF£¨OÊÇ×ø±êÔ­µã£©ÊǵȱßÈý½ÇÐΣ¬Ôò¸ÃË«ÇúÏßÀëÐÄÂÊeΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®1+$\sqrt{2}$D£®1+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÍÖÔ²C¶ÌÖáµÄÒ»¸ö¶ËµãÓ볤ÖáµÄÒ»¸ö¶ËµãµÄÁ¬ÏßÓëÔ²O£ºx2+y2=$\frac{4}{3}$ÏàÇУ¬ÇÒÅ×ÎïÏßy2=-4$\sqrt{2}$xµÄ×¼ÏßÇ¡ºÃ¹ýÍÖÔ²CµÄÒ»¸ö½¹µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýÔ²OÉÏÈÎÒâÒ»µãP×÷Ô²µÄÇÐÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Á¬½ÓPO²¢ÑÓ³¤½»Ô²OÓÚµãQ£¬Çó¡÷ABQÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÈñ½Ç¦Á£¬¦ÂÂú×ã$cos¦Á=\frac{{2\sqrt{5}}}{5}£¬sin£¨{¦Á-¦Â}£©=-\frac{3}{5}$£¬Ôòsin¦ÂµÄֵΪ$\frac{2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=-1+2an
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©Èôbn=log2an+1£¬ÇÒÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Çó$\frac{1}{{T}_{1}}+\frac{1}{{T}_{2}}$+¡­+$\frac{1}{{T}_{n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|x-a|-|x+1|£¬ÇÒf£¨x£©²»ºãΪ0£®
£¨1£©Èôf£¨x£©ÎªÆæº¯Êý£¬ÇóaÖµ£»
£¨2£©Èôµ±x¡Ê[-1£¬2]ʱ£¬f£¨x£©¡Ü3ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸