精英家教网 > 高中数学 > 题目详情
8.如图,在△ABC中,AB=2,cosB=$\frac{1}{3}$,点D在线段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的长;
(2)若BD=2DC,△ADC的面积为$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

分析 (1)求出sinB=$\frac{2\sqrt{2}}{3}$,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,由此能求出AD.
(2)推导出S△ABD=2S△ADC,S△ABC=3S△ADC,${S}_{△ABC}=4\sqrt{2}$,BC=6,从而得到$\frac{sin∠BAD}{sin∠CAD}=2•\frac{AC}{AB}$,由此利用余弦定理能求出$\frac{sin∠BAD}{sin∠CAD}$的值.

解答 (本小题满分12分)
解:(1)在三角形中,∵cosB=$\frac{1}{3}$,∴sinB=$\frac{2\sqrt{2}}{3}$. …(2分)
在△ABD中,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,
又AB=2,$∠ADB=\frac{π}{4}$,sinB=$\frac{2\sqrt{2}}{3}$.
∴AD=$\frac{8}{3}$.   …(5分)
(2)∵BD=2DC,∴S△ABD=2S△ADC,S△ABC=3S△ADC
又${S}_{△ADC}=\frac{4}{3}\sqrt{2}$,∴${S}_{△ABC}=4\sqrt{2}$,…(7分)
∵S△ABC=$\frac{1}{2}•AB•BC•sin∠ABC$,∴BC=6,
∵${S}_{△ABD}=\frac{1}{2}AB•AD•sin∠BAD$,${S}_{△ADC}=\frac{1}{2}AC•AD•sin∠CAD$,
S△ABD=2S△ADC,∴$\frac{sin∠BAD}{sin∠CAD}=2•\frac{AC}{AB}$,…(9分)
在△ABC中,由余弦定理得:
AC2=AB2+BC2-2AB•BC•cos∠ABC,∴AC=4$\sqrt{2}$,…(11分)
∴$\frac{sin∠BAD}{sin∠CAD}$=2•$\frac{AC}{AB}$=4$\sqrt{2}$.   …(12分)

点评 本题考查线段长的求法,考查两个角的正弦值的比值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{2}{x}-alnx({a∈R}),f(x)={x^2}$+g(x).
(1)试判断g(x)的单调性;
(2)若f(x)在区间(0,1)上有极值,求实数a的取值范围;
(3)当a>0时,若f(x)有唯一的零点x0,试求[x0]的值.(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2,[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex+ax+b(a,b∈R)在x=ln2处的切线方程为y=x-2ln2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x>0,k≤2时,求证:(k-x)f'(x)<x+1(其中f'(x)为f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tan(π+θ)=2,则$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为(  )
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f(0)=f(1)=0,且对任意x1,x2∈[0,1]都有|f(x1)-f(x2)|≤$\frac{1}{3}$|x1-x2|,则对下列四个结论:
①若f(1-x)=f(x)且0≤x≤$\frac{1}{2}$时,f(x)=$\frac{1}{20}$x(x-$\frac{1}{2}$),则当$\frac{1}{2}$<x≤1时,f(x)=$\frac{1}{20}$(1-x)($\frac{1}{2}$-x);
②若对?x∈[0,1]都有f(1-x)=-f(x),则y=f(x)至少有3个零点;
③对?x∈[0,1],|f(x)|≤$\frac{1}{6}$恒成立;
④对?x1,x2∈[0,1],|f(x1)-f(x2)|≤$\frac{1}{6}$恒成立.
其中正确的结论个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合$M=\{x|{x^2}=x\},N=\{x|\frac{x}{x-1}≥0\}$,则M∩N=(  )
A.B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,AP=AD=2CD=1,AB=2,PA⊥平面ABCD.
(1)求证:平面PBD⊥平面PAC;
(2)若侧棱PB上存在点Q,使得VP-ACD:VQ-ABC=1:2,求二面角Q-AC-B的余弦值.

查看答案和解析>>

同步练习册答案