分析 (1)证明PA⊥BD,AC⊥BD,推出BD⊥平面PAC,然后证明平面PBD⊥平面PAC.
(2)分别以AD,AB,AP所在的直线为x轴、y轴、z轴建立空间直角坐标系A-xyz,求出相关点的坐标,设P,Q到平面ABCD距离分别为h1,h2,则h1=AP=1.求出Q的坐标,求出平面QAC法向量,平面ABCD法向量,利用空间向量的数量积求解二面角Q-AC-B的余弦值.
解答 (1)证明:∵PA⊥平面ABCD,
又BD⊆平面ABCD,所以PA⊥BD
直角梯形ABCD中,∠BAD=∠ADC=90°,AD=2CD=1,AB=2,
所以$tan∠ABD=tan∠CAD=\frac{1}{2}$,
所以∠ABD=∠CAD,又∠DAC+∠BAC=90°
所以∠ABD+∠BAC=90°,即AC⊥BD
又AC∩PA=A,所以BD⊥平面PAC.┉┉┉┉┉┉┉┉┉┉(5分)
又BD⊆平面PBD,所以平面PBD⊥平面PAC.┉┉┉┉┉┉┉┉┉┉(6分)![]()
解:(2)由PA⊥平面ABCD,得PA⊥AD,PA⊥AB,又∠BAD=90°,
如图,分别以AD,AB,AP所在的直线为x轴、y轴、z轴建立空间直角坐标系A-xyz,则$A({0,0,0}),P({0,0,1}),B({0,2,0}),C({1,\frac{1}{2},0}),D({1,0,0})$.
设P,Q到平面ABCD距离分别为h1,h2,则h1=AP=1.
∵VP-ACD:VQ-ABC=1:2,$\frac{{V}_{P-ACD}}{{V}_{Q-ABC}}=\frac{\frac{1}{3}{S}_{△ACD}{h}_{1}}{\frac{1}{3}{S}_{△ABC}{h}_{2}}=\frac{1}{2}$,所以h2=$\frac{1}{2}{h}_{1}$,所以Q为PB的中点,即Q(0,1,$\frac{1}{2}$),
设平面QAC法向量为$\overrightarrow m=({x,y,z})$,又$\overrightarrow{AC}=({1,\frac{1}{2},0}),\overrightarrow{AQ}=({0,1,\frac{1}{2}})$,
由$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AC}=0}\\{\overrightarrow m•\overrightarrow{AQ}=0}\end{array}}\right.$得$\left\{{\begin{array}{l}{x+\frac{1}{2}y=0}\\{y+\frac{1}{2}z=0}\end{array}}\right.$,取y=-2,得$\overrightarrow m=({1,-2,4})$.
又平面ABCD法向量为$\overrightarrow m=\overrightarrow{AP}=({0,0,1})$,∴$cos<\overrightarrow m•\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}=\frac{4×1}{{\sqrt{21}×1}}=\frac{4}{21}\sqrt{21}$┉┉┉┉┉┉┉┉┉┉(11分)
又二面角Q-AC-B为锐角,所以二面角Q-AC-B的余弦值为$\frac{4}{21}\sqrt{21}$┉┉┉┉┉┉┉(12分)
点评 本题考查二面角的平面角的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及垃圾桶里计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B={x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=2x | B. | y2=-2x | C. | y2=4x | D. | y2=-4x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3,4,5 | B. | 4,5,6 | C. | 2,4,5 | D. | 2,3,4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{3}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com