精英家教网 > 高中数学 > 题目详情
8.某公司的班车分别在7:30,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过15分钟的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{5}{8}$

分析 求出小明等车时间不超过15分钟的时间长度,代入几何概型概率计算公式,可得答案.

解答 解:设小明到达时间为y,
当y在8:15至8:30时,小明等车时间不超过15分钟,
故P=$\frac{15}{40}$=$\frac{3}{8}$,
故选:B.

点评 本题考查的知识点是几何概型,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,AP=AD=2CD=1,AB=2,PA⊥平面ABCD.
(1)求证:平面PBD⊥平面PAC;
(2)若侧棱PB上存在点Q,使得VP-ACD:VQ-ABC=1:2,求二面角Q-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在边长为4的正方形ABCD中,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.
(Ⅰ)点E是AB的中点,点F是BC的中点,求证:平面A′ED⊥平面A′FD;
(Ⅱ)当BE=BF=$\frac{1}{4}$BC,求三棱锥A′-EFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=|xex|.
(1)求函数f(x)的单调区间;
(2)若g(x)=f2(x)+tf(x)(t∈R),满足g(x)=-1的x有四个,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,${(\frac{a}{{\sqrt{x}}}-x)^6}$展开式的常数项为15,则$\int_{-a}^a{(\sqrt{1-{x^2}}+sin2x)dx}$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙两企业根据赛事组委会要求为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件;制作一等奖、二等奖所用原料完全相同,但工艺不同,故价格有所差异.甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费如表所示,则组委会定做该工艺品的费用总和最低为4900元.
奖品
缴费(无/件)
工厂
一等奖奖品二等奖奖品
500400
800600

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x3-3x+1,x∈[-2,2]的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=f(x)导函数的图象如图所示,则下列说法错误的是(  )
A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“m>n>0”是方程mx2+ny2=1表示椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案