精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=x3-3x+1,x∈[-2,2]的最大值为M,最小值为m,则M+m=2.

分析 求出原函数的导函数,得到导函数的零点,进一步得到原函数的极值点,求得极值,再求出端点值,比较可得最大值为M,最小值为m,则M+m可求.

解答 解:由f(x)=x3-3x+1,得f′(x)=3x2-3=3(x+1)(x-1),
当x∈(-2,-1)∪(1,2)时,f′(x)>0,当x∈(-1,1)时,f′(x)<0.
∴函数f(x)的增区间为(-2,-1),(1,2);减区间为(-1,1).
∴当x=-1时,f(x)有极大值3,当x=1时,f(x)有极小值-1.
又f(-2)=-1,f(2)=3.
∴最大值为M=3,最小值为m=-1,
则M+m=3-1=2.
故答案为:2.

点评 本题考查利用导数求函数在闭区间上的最值,考查函数的导数的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-a|-|x+1|,且f(x)不恒为0.
(1)若f(x)为奇函数,求a值;
(2)若当x∈[-1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件$\left\{\begin{array}{l}x≥y\\ y≥4x-3\\ x≥0,y≥0\end{array}\right.$,若目标函数2z=2x+ny(n>0),z的最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某公司的班车分别在7:30,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过15分钟的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E、F分别是棱DD1、C1D1的中点.
(1)求三棱锥B1-A1BE的体积;
(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-1)ex+ax2有两个零点.
(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}中,a2n=a2n-1+(-1)n,a2n+1=a2n+n,a1=1,则a20=46.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+6≥0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$,且z=2x+4y的最小值为2,则常数k=(  )
A.2B.-2C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:f(x)=x2+(2m-2)x+3在区间(-∞,0)上是减函数;命题q:“不等式x2-4x+1-m≤0无解”.如果命题p∨q为真,命题p∧q为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案